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Abstract

Unauthorized drones present a danger to airports and disaster areas. Localization and tracking
of these unauthorized drones reduces some of this danger. It is possible to use a drone outfitted
with with commercial antennas and radios to autonomously localize other drones. Prior work has
shown that drones with this equipment may use onboard planners such as Monte Carlo tree search to
perform path planning in a localization task. In this work, we demonstrate that the same is possible
with deep reinforcement learning, moving computation off the drone computer and into simulation.

iii



Acknowledgments

Thank you to Louis Dressel, who gave me amazing guidance on this project and gave me motivation
to attend graduate school. I had no idea that his assignment as my mentor would be such a turning
point in my academic life, and I am so grateful for his continued support in spite of all the difficulties
I faced. Thank you to Mykel Kochenderfer, who supervised this project and gave invaluable advice.
I’m lucky to have met such an interesting and supportive professor. I also thank my coworkers at
The Aerospace Corporation, who graciously supported this project and also pushed for me to attend
graduate school. Thank you to my friends and family, without whom I wouldn’t have had the mental
fortitude to finish this project considering the circumstances of Spring 2020.

iv



Contents

Abstract iii

Acknowledgments iv

1 Introduction 1

2 Related Work 3

3 Preliminaries 5
3.1 Drone Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Drone Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Belief Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Methods 10
4.1 Deep Q-Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Transition to Continuous Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Deep Deterministic Policy Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Results and Discussion 16
5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Reinforcement Learning-based Controllers . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3.1 DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.2 DDPG and SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



6 Conclusion 20

vi



Chapter 1

Introduction

The use of drones has become widespread in recent years. In the civil sector, drones can be used
for disaster relief or surveillance. In the commercial sector, drones can be used for package delivery,
photography or film production, or agriculture. Drones are also often used in the military for
reconnaissance and as weapons.

The popularity of drones brings with it several challenges. Drones near airports pose a threat
to aircraft operations, and carry the potential for a terrorist attack [1]. This year to date, the UK
Airprox Board has recorded 75 "Airprox" events in which drones may have compromised the safety
of aircraft [2]. Currently, the FAA prohibits drones from operating near rescue efforts in natural
disasters like hurricanes or wildfires [3]. In these situations, it would be beneficial to localize the
position of the offending drone. Then it’d be possible to intercept and deal with the drone in a timely
and safe manner.

Tracking a drone can be done by monitoring its radio telemetry. Drones usually emit radio signals
to their operators, like speed, position, battery life, and other vital data. A seeker drone outfitted
with radio receivers and antennas can home in on these radio signals and find the target drone’s
position. While it is possible to track drones on the ground or with stationary trackers, a drone-based
tracker would be as mobile as the target and be able to follow it for longer distances. In essence, this
work focuses on localization of a single radio-controlled drone with an autonomous drone.

This work builds heavily off of [4] and [5] in that it has the same goal – improve drone tracking
performance over greedy, one-step planners. A greedy solution would execute the best action (in
terms of some cost function) at every timestep, without planning ahead to the next. This work
develops a planning system that aims to choose the best overall actions, perhaps sometimes making
suboptimal myopic decisions in exchange for better hyperopic path planning. We also take on the
restrictions of low-cost hardware as seen in [4], so that our experiments are comparable and validation
of simulations can occur seamlessly.

This formulation of the problem has two drones: a seeker drone and a target drone. The seeker
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2 CHAPTER 1. INTRODUCTION

drone’s objective is to track the moving target drone by capturing emissions from the target drone’s
radio. Existing solutions using Monte Carlo tree search (MCTS) often require large amounts of
memory and computational power that might be lacking on drone avionics boards. Previous work
shows how neural networks can be used for guidance of drones to waypoints with much smaller
memory footprints than traditional Markov decision process (MDP) solutions in obstacle avoidance
and waypoint finding [5]. This work applies the same methodology to the drone localization problem.
We show that it is possible to train several deep reinforcement learning algorithms, namely Deep
Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), and Soft Actor-Critic (SAC), to
perform path planning for the seeker drone.

The main contributions of this work are twofold. First, we provide a low-memory approximate
solution to continuous control in radio-source localization. Second, we develop a simulation system
for localization problems that allows for training of reinforcement learning agents.



Chapter 2

Related Work

Low-cost bearing-only localization is explored by Dressel and Kochenderfer in [6]. This work introduces
a pseudo-bearing sensor consisting of a directional antenna and an omnidirectional antenna. When
used in tandem, the antennas produce pseudo-bearing measurements of the radio target, improving
localization time compared to sensors that contain only a single directional antenna. This sensor
system, however, imposes the constraint of knowing the gain pattern of the directional antenna.
Without this information, accurate pseudo-bearing measurements cannot be taken. Also introduced
in this work is the belief MDP framework for solving drone-based localization problems. Because
there is uncertainty in measurements provided by the seeker drone’s sensors, the target’s true position
is only partially observable. Including this uncertainty into an MDP results in a partially observable
MDP (POMDP) with a much more difficult solution space. To control this additional complexity,
the authors use a belief MDP, where the current ’belief,’ i.e. some estimate of the true state, is
used in the state space. In the drone localization problem, this is a filter that is updated with the
measurements provided by the seeker’s sensors. The controller used in this work is a greedy solver,
selecting actions according to minimum cost at every step. While simple to implement, solutions
resulting from the greedy solver are suboptimal and can be improved.

This improvement is realized in a MCTS solution to drone localization, presented by Dressel and
Kochenderfer in [4]. MCTS improves performance over the greedy controller in terms of both mean
tracking error and near collision rate. In addition to the enhanced solver, this work uses a simpler
sensor modality introduced in [7]. The sensor modality used in this work consists of two directional
antennas, which are used to compare signal strength in front of or behind the drone. While less
informative than the pseudo-bearing sensor developed previously, this sensor has the advantage of
being easier to construct. In the low-cost paradigm this work focuses on, we prefer the simpler sensor
and thus develop our seeker drone according to this model.

Neural networks can be used to compress the solution to a large MDP [5]. In this work by Julian
and Kochenderfer, the lookup table for the discrete value iteration solution is represented by a neural
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4 CHAPTER 2. RELATED WORK

network. In terms of solution quality, this compression is shown to have negligible differences to a
standard solver. However, it produces solutions thousands of times faster and with a much smaller
memory footprint, motivating the use of neural network sin path planning for radio localization.
Because of the memory requirements imposed by a MCTS solver, compression using a neural network
is desirable.

Deep reinforcement learning (deep RL) for unmanned aerial vehicle (UAV) control is applied in [8].
This work demonstrates a deep RL controller for a fixed-wing UAV tasked with wildfire monitoring.
This work is notable for its representation of uncertainty in the system with a particle filter, which
is also seen in [4, 7]. However, the particle filter representation of the state space is fed directly
to a convolutional neural network for processing, rather than used in simulation as in [4, 7]. We
combine the concept of convolutional neural networks for particle filter state representations with the
drone-based radio localization task, allowing us to decrease onboard computational cost of planning.

There exist a variety of controllers suitable for this problem. In the discrete action space setting, a
popular algorithm is Deep Q-Networks (DQN) [9]. While the algorithm was first used on Atari games,
simulation environments like those found in [8] and [4] may also be used. It is important to note that
DQN necessitates a discrete action space, resulting in a limited set of actions the seeker may take at
every step. In the continuous action space setting, the analog to DQN is Deep Deterministic Policy
Gradients (DDPG) [10]. Improvements upon the original DDPG algorithm have brought rise to the
Soft Actor-Critic (SAC) algorithm, a variation that maximizes entropy in the produced solution.
Because drone control is inherently continuous, DDPG and SAC represent more suitable choices.



Chapter 3

Preliminaries

3.1 Drone Hardware

The target drone is a DJI F550 hexcopter with a telemetry radio transmitting using FHSS along the
902-928 MHz band. The seeker drone is a DJI Matrice 100 quadcopter with a simple sensor system:
two Moxon antennas mounted on the front and back of the drone. When the signal strength measured
is stronger at front, the target is said to be in front of the drone, and vice versa. In modeling the
drone localization problem, we choose to represent the world as a 2D plane. In information gathering
tasks, changes in altitude with this sensor system do not yield much more information because of
almost constant gain over elevation angle to the source [4].

3.2 Drone Dynamics

The drone dynamics are exactly those described in [4]. The seeker drone state at time t is xt =

[xn
t , x

e
t , x

h
t ]

|, where x
n
t and x

e
t are the seeker’s north and east coordinates and x

h
t is the seeker’s

heading measured east of north. The state described here does not contain velocity or altitude as
simplifying assumptions. The drone follows a first-order motion model, so the state after applying a
control input ut for duration �t the new state is

xt+�t = xt + ut�t (3.1)

The target drone state at time t is ✓t = [✓nt , ✓
e
t ]

|, where ✓
n
t and ✓

e
t are the target’s north and east

coordinates. The target drone is assumed to move with a constant velocity ✓̇ = [✓̇nt , ✓̇
e
t ]

|. The drone
follows a first-order motion model, so the state after �t is

✓t+�t = ✓t + ✓̇t�t (3.2)
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6 CHAPTER 3. PRELIMINARIES

3.3 Sensor Model

The bearing from the seeker drone to the target drone is

�t = arctan
✓
e
t � x

e
t

✓
n
t � x

n
t

(3.3)

when measured east of north.
At time t, the seeker drone makes measurement zt 2 {0, 1}, representing whether the target drone

is in front of the seeker drone. To determine zt, the seeker measures the signal strength of both of its
antennas – a strong signal on the front-facing antenna indicates that the target lies in front of the
seeker, and vice versa. When the target lies to the sides of the seeker, both measurements are equally
likely. Additionally, there is some chance of error resulting from noise in the system [7]. Thus, the
probability of measuring zt = 1 is:

P (zt = 1|xt, ✓t) =

8
>>><

>>>:

0.9 if �t � x
h
t 2 [�60�, 60�]

0.1 if �t � x
h
t 2 [120�, 240�]

0.5 otherwise.

(3.4)

3.4 Particle Filter

The seeker drone maintains a belief of the possible location of the target drone, which is modeled
with a particle filter. It is useful to think of a particle filter as a type of hidden Markov model: as
evidence from the sensor is received, we can update our belief of the true state of the system. Belief
is often strongly non-linear, so particle filters are preferred over standard Kalman filters for this task
[4, 8]. With stationary radio sources, a discrete histogram filter may be used instead. Updating
discrete filters for moving targets has poorer runtime performance than particle filters in the same
task.

Belief at time t is represented by a set of N particles, each representing a hypothesis of the target
drone’s pose. Each particle has a position and velocity estimate of the true target position and
velocity. Updates are made to the particle filter at every timestep to improve the belief’s accuracy.

The belief update consists of three steps. The first step is the prediction step, where each particle
is propagated according to the dynamics described in equation 3.2. Noise is added to the dynamics to
prevent particle deprivation, a situation that arises when all particles converge to a hypothesis that
doesn’t accurately represent the true state. The second step is the weighting step, where each particle
is assigned a weight according to how probable an observation zt is given the particle’s position:

bt(pi) / bt��t(pi)P (zt|xt, pi) (3.5)

where pi is a particle and bt(pi) is the probability that the true state is modeled by particle i. P (·) is
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our observation likelihood function from 3.4 and zt is the seeker’s observation at time t. The third
step is resampling, where particles are sampled according to these weights with replacement. In this
work, we use stratified resampling to aid in maintaining an accurate estimate of the target while
ensuring resiliency to particle deprivation.

3.5 Belief Markov Decision Process

As in [4], we will use the belief MDP framework to solve the drone localization problem. We will first
motivate the belief MDP with a discussion of partially observable MDPs (POMDPs).

A POMDP comprises a state space S, an action space A, a reward function R, and a transition
function T defining the transition between states. An agent is unable to observe the true state st

directly and instead makes an observation ! 2 ⌦ conditioned on the true state.
Solving a POMDP consists of finding a policy ⇡

⇤ such that

⇡
⇤ = argmax

⇡
E
" 1X

t=0

�
t
R(st,⇡(!t))

#
(3.6)

where � is a discount factor.
POMDPs have a significant disadvantage when formalizing localization tasks. Rewards that

depend on belief of the true state of the system are often difficult to represent in the POMDP
framework [4]. For this reason, we instead convert the POMDP to a belief MDP.

Belief MDPs are similar to MDPs where the system state is instead a belief of the true system
state. We hereafter model the problem as an MDP where each state is a tuple of the fully observable
part of the true state and the belief of the partially observable part of the true state.

States

Each state is a tuple st = (bt, xt) where bt is the seeker’s belief and xt is the seeker’s pose. The
seeker’s belief is the particle filter mentioned in the previous section.

Actions

The belief MDP framework is general enough to model both discrete and continuous action spaces.
In this work, we consider both cases. In the discrete case, the seeker drone is allowed to travel
with a constant velocity in 8 directions equally spaced in a radial pattern. In addition to moving
in 8 directions, the controller may also elect to change its heading by +15�, 0�, or �15� at each
step. This results in 24 total actions available at each step. Null actions can be approximated by
taking opposing actions in subsequent timesteps. In the continuous case, the seeker drone travels
with a constant velocity in any direction, with the heading change limited to the continuous range
[�15�,+15�].
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Reward Function

Our reward function for radiolocation captures the desire to maintain an accurate and precise estimate
of the target’s location while also maintaining an acceptable distance from the target. The motivation
behind this is the desire to preserve the safety of the seeker drone, but also extends nicely to other
applications besides drone localization. For example, if a drone is attempting to localize a wild
animal with a radio collar, it is prudent to not fly too close lest the seeker scare the target away.

A precise belief is one that has low uncertainty over the target’s position. Minimization of this
uncertainty is equivalent to minimization of the entropy of the belief distribution. Particles in the
filter are first discretized into M bins. Entropy can then be defined as:

H(bt) = �
MX

i=1

b̃t[i] log b̃t[i] (3.7)

where b̃t is the proportion of particles in each bin.

The true objective then has the form:

r(st) = H(bt) + �Ebt (kxt � ✓tk < d) (3.8)

where � defines the importance of the near collision penalty and d is a distance threshold. The
penalty term contains only the belief of the belief of the target’s position rather than the true target
position. This is to encourage the seeker to maintain a distance from the particles during evaluation.
If the belief is representative of the true state, then the seeker will maintain a safe distance. If the
belief is not representative of the true state, then the seeker will at least maintain a distance from
the belief, which still might contain a noisy or partially accurate model of the target’s motion.

This formulation, however, provides little signal to reinforcement learning-based controllers. This
is especially prevalent with the stochastic nature of particle filtering for belief estimates. Simply
using entropy as a reward presents a problem because it is stochastic, non-Markovian, and the
relative difference between a good reward and poor reward is small (often smaller than difference
from stochasticity). Conceptually, a good policy for localization with a near collision penalty would
be similar to a geologist studying a volcano – get as close to the rim as possible and then hover
around the rim. This policy can be easily described with a reward function that is shaped like a
volcano, with reward concentrated at the near collision boundary, and a large penalty for being inside.
Instead we use a surrogate reward function using proximity to the particle filter centroid R.

r(st) =

8
<

:

R
d � rmin if R  d

rscale exp
n
� 1

rscale
(R� d)

o
otherwise

(3.9)

where rmin is the minimum reward and rscale controls the shape of the exponential. This surrogate
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Figure 3.1: Monte Carlo simulation of reward function. Volcano shaped.

reward function is much simpler to optimize compared to the true objective, resulting in faster
convergence for RL-based controllers. A visualization of the reward is shown in 3.1.

An issue with this surrogate is that the constants rmin and rscale have little interpretability in
the context of the original reward function. Choosing values for these parameters to be comparable
against a MCTS agent with parameter � is very difficult. Also, there is no guarantee that this
surrogate describes the optimal behavior for our seeker – this surrogate only describes a human
intuition for what a decent policy is, as the true objective is very difficult to optimize.



Chapter 4

Methods

4.1 Deep Q-Networks

The Deep Q-network (DQN) algorithm is an off-policy reinforcement learning algorithm originally
used to solve the Atari environments [9]. As with other reinforcement learning algorithms, state-action
pairs are assigned a value Q(s, a) representing the value of taking that action from that state. This
value is defined by the Bellman equation

Q(s, a) = R(s) + �

X

s02S
p(s0|s, a)max

a02A
Q(s0, a0) (4.1)

where p(s0|s, a) is the probability of transitioning to state s
0 from state s after taking action a.

Because computing the true value of Q for every state-action pair is intractable, we use a neural
network to approximate Q. We train this neural network by minimizing the Bellman error

EBellman = R+ �max
a02A

Q(s0, a0;w)�Q(s, a;w) (4.2)

with gradient descent. The optimal policy derived from the Bellman equation is then

⇡
⇤(s) ⇡ argmax

a2A
Q(s, a;w) (4.3)

The exact algorithm is detailed in 1.

In practice, there are several steps we must take to ensure that our environment is compatible
with DQN. As mentioned earlier, DQN relies on a discrete action space. The preprocessing function
� ensures that the state space can be fed to the neural network approximating the Q function.
Since particle filters are necessarily continuous in their estimates of the true state, they must be
discretized for input to the convolutional neural network. This also involves an important feature of

10



4.2. NETWORK ARCHITECTURE 11

Algorithm 1 Deep Q-learning with Experience Replay
1: Initialize replay memory D to capacity N

2: Initialize action-value function Q with random weights
3: for episode = 1,M do
4: Initialize sequence s1 = {x1} and preprocessed sequenced �1 = �(s1)
5: for t = 1, T do
6: With probability ✏ select a random action at

7: otherwise select at = maxa Q⇤(�(st), a; ✓)
8: Execute action at in emulator and observe reward rt and observation xt+1

9: Set st+1 = st, at, xt+1 and preprocess �t+1 = �(st+1)
10: Store transition (�t, at, rt,�t+1) in D
11: Sample random minibatch of transitions (�j , aj , rj ,�j+1)

12: Set yj =

(
rj for terminal �j+1

rj + �maxa0 Q(�j+1, a
0; ✓) for non-terminal �j+1

13: Perform a gradient descent step on the loss (yj �Q(�j , aj ; ✓))2

14: end for
15: end for

[8] – ensuring that observations are relative to the seeker. This assists convergence in that the agent
doesn’t need to learn a different policy for each starting position of the seeker in the domain. The
agent can use prior experience more easily, as observations in episodes are no longer as sensitive to
initial conditions as before. An image illustrating this is shown in 4.1, compared to a non-relative
observation shown in 4.2.

4.2 Network Architecture

A neural network is used to approximate the Q value function. In a style similar to [8], a two-stream
architecture (Figure 4.3)is used. This is to accommodate the tuple that represents our state: a
convolutional neural network is used for the filter, while a standard neural network is used for the
seeker state variables. The particle filter representing belief is first discretized to a 2d histogram.
Convolutional layers are then used to extract spatial information from this downsampled belief.
Only particle positions are used in this downsampling – the mean of the velocity of all particles is
concatenated to xt. The downsampling allows us to take advantage of the spatial relationships that
particles have. As a form of feature engineering, we include the particle filter centroid with the seeker
state variables. ReLU activations are used for all fully-connected layers, while instance normalization
is used for the convolutional layers.

Additionally, several improvements over the original DQN algorithm are used. Namely, we use a
dueling architecture introduced in [11] and use the double DQN update rule described in [12].
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Figure 4.1: Downsampled and histogrammed particle filter, rotated relative to ownship. Dotted lines
indicate extent of sensor accuracy.

Figure 4.2: A non-rotated belief. This scene is not the same as that shown in4.1, but showcases how
the rotation of the seeker is not taken into account when constructing the observation.
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xn
t , xe

t , ht,
ˆ̇

✓nt ,

ˆ̇
✓et , ✓̂nt , ✓̂et

200 fc

200 fc

100 fc

Discretized Filter

32 2 ⇥ 2 conv

64 2 ⇥ 2 conv

128 2 ⇥ 2 conv

200 fc

200 fc

100 fc

200 fc

200 fc 200 fc

Q-value Output

Figure 4.3: A two-stream dueling architecture is used to approximate the Q value function. fc
denotes a fully-connected layer while conv denotes a convolutional layer.

4.3 Transition to Continuous Actions

Action discretization is inherently suboptimal when compared to continuous action spaces. However,
it is necessary when solving with DQN. Performing action discretization while conforming to the
experiment structure defined in [4] requires 109 actions, no small feat for a DQN-based controller. We
mitigate this somewhat by limiting our action space to just 24 separate actions, but even this presents
a challenge. Many actions are very similar to each other – it would be useful to leverage these similar
actions when performing updates on our value functions, but the standard DQN algorithm does not
permit this.

Instead, we implement continuous control algorithms: DDPG [10] and one of its successors SAC
[13, 14]. Instead of choosing one of 24 actions, the agent now had two continuous outputs – a relative
bearing for navigation and a heading for sensor movement.

4.4 Deep Deterministic Policy Gradients

DDPG is an off-policy reinforcement learning algorithm for use with continuous action spaces [10].
The algorithm works by maintaining an actor function and critic function, both approximated by
neural networks. The actor function receives as input the state of the environment, and outputs
an action in the continuous action space. The critic function receives as input the state of the
environment and the action taken at that time, and outputs the expected value attained from taking
that transition. By minimizing the Bellman error as in DQN, we approximate the Q value function.
The actor function is optimized directly to output actions that maximize expected return.

A variety of modifications were needed to make DDPG a viable solution method in the context of
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deep reinforcement learning. First, an experience buffer is needed to minimize correlations between
samples. Second, target networks are required to stabilize learning. Both of these modifications were
introduced in [9]. A detailed exposition of DDPG can be found in 2.

Algorithm 2 Deep Deterministic Policy Gradient
1: Initialize replay memory D
2: Initialize actor network µ and critic network Q

3: Initialize target networks µ
0 and Q

0

4: for episode = 1,M do
5: Initialize sequence s1

6: Initialize random process N for exploration
7: for t = 1, T do
8: Select action at = µ(st) +Nt

9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch of N transitions (si, ai, ri, si+1)
12: Set yi = ri + �Q

0(si+1, µ
0(si+1))

13: Update critic by minimizing loss equal to MSE of yi = Q(si, ai)

14: Update actor with policy gradient rJ ⇡ 1

N

X

i

raQ(s, a)rµ(s)

15: Update target networks
16: end for
17: end for

The preprocessing on filter and state space remains the same as in the discrete action case. The
neural network architectures are as similar as possible to DQN while maintaining correct input and
output layers, i.e., only the input and output layers are modified and the intermediate layers are the
same.

4.5 Soft Actor-Critic

The SAC algorithm represents a modification of the DDPG algorithm [13, 14]. The crux of SAC is
that actions are taken to maximize the entropy of the policy, i.e. solving the task as randomly as
possible. A full treatment of the algorithm may be found in [14]. However, we do note here that the
stochastic policy produced by the algorithm offers a major advantage over DDPG: the stochastic
nature of the environment is better handled with a stochastic actor than a deterministic one. Like
DDPG, we apply the same preprocessing we performed in DQN and ensure that our neural network
architectures are as similar as possible.
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4.6 Simulation

Training the planner on the physical system is infeasible because of time constraints – the training
environment must be reset every episode, human intervention is required to replace batteries, and
weight updates are limited by the frequency of actions. Thus, each algorithm is trained on a simulator
that captures the essential aspects of the system described in section 3. The simulator code may be
found at [15].

The seeker and target drones are modeled in a 200 m⇥ 200 m area, where the seeker begins each
episode at the center of the area and the target begins at a randomly selected corner and travels
to an adjacent corner at 1.7 m/s. In the discrete case, the seeker drone can move at 5 m/s in 8
equally-spaced directions. In the continuous case, the seeker drone can move at the same speed in
any direction. The particle filter has 2000 particles, uniformly distributed at initialization and pruned
using stratified resampling. In all experiments, the distance threshold is taken to be 15 meters.



Chapter 5

Results and Discussion

5.1 Metrics

Agents are evaluated quantitatively on two criteria: near collision rate and tracking error. Near
collision rate is the proportion of timesteps that a collision occurred. Tracking error is the distance
between the centroid of the belief and the true target position per timestep. These two criteria are
adversarial – a tradeoff exists between minimizing tracking error by obtaining measurements closer
to the target and maintaining a safe distance.

5.2 Baseline

The RL-based planners are compared against two baselines found in [4], a UCT-based MCTS planner
and a greedy planner. Both these methods are online and require no training. To this effect, we
have already accomplished one of our goals by simply using reinforcement learning – an RL-based
planner will have computation done off the drone, prior to any flights. Any calculations done for
in-flight planning are merely the forward passes through the neural network, rather than simulations
done in-flight at every step. We observe that the baseline agents match the performance seen in [4],
effectively validating our simulation environment as correct.

5.3 Reinforcement Learning-based Controllers

5.3.1 DQN

We find that discretization at the scale required to make DQN viable does not produce an effective
solution. Estimation of Q-values for even just 24 actions, compared to 109 used in the MCTS and
greedy baselines, results in greatly degraded performance. Solutions produced often degenerated to
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Figure 5.1: MCTS and SAC outperform the greedy controller, but there is no discernible difference
between MCTS and SAC themselves. For both axes, lower is better.

constant policies, where a single action is chosen for all states. It’s possible that this degradation is
because higher fidelity action spaces allow for greater control when maneuvering the drone, and the
extremely small action space that discretization necessitates is not enough for good localization. It is
also possible that the action space is too large for DQN to effectively optimize over – the argmax

term when choosing the best performing action must be done over all 24 actions, and optimizing
over this large a search space is difficult.

5.3.2 DDPG and SAC

As both of these algorithms are very similar, we evaluate controller performance with SAC. Com-
parisons to the MCTS and greedy controllers can be found in 5.1. We find that the continuous
RL-based controller trained with SAC performs about as effectively as MCTS. Just as with MCTS,
discretization of the particle filter results in low performance in situations with highly penalized near
collisions. In situations where near collisions are not penalized nearly as much, all agents behave
similarly.

Qualitatively, we find that the reward function induces the expected behavior. The seeker will
first travel towards the target, then oscillate its sensors while orbiting from a safe distance. An
intersting feature of this oscillation is that the agent prefers to keep the target in the periphery of its
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Figure 5.2: One episode of drone localization with SAC.

sensors, as this provides more information than simply keeping the target in front of the seeker. This
can be seen in 4.1, where the periphery is a smaller angle than the accurate sensor angle. Oscillating
pins the target to a 60� area rather than a 120� area. A video of one episode depicting this behavior
can be found here, while a picture depicting the episode with seeker history can be found in 5.2.

Failure cases include instances where the seeker veers too close to the target, resulting in a low
tracking error at the expense of a high near collision rate. A rare but interesting failure mode was
concentration of particles in a location completely off the target, resulting in particle deprivation.
This is possible when particle resampling is not performed often enough, resulting in stagnation of
the belief and degeneration to just a few hypotheses. To combat this, more noise was injected into
the particle filter update dynamics.

This result is a testament to the difficulty of reinforcement learning. Each trial necessitated the
training of a new agent with different hyperparameters controlling the penalization of near collisions.
A grid search over the hyperparameter space of the reward function produced a curve that shows
similar performance to the MCTS solution. While we did accomplish the goal of moving the bulk of
the computation to an offboard computer, it resulted in having to retrain an agent to convergence
when slightly different environment details (target speed, seeker speed, starting positions of the
seeker or target, etc.) were changed. Additionally, the surrogate reward function provides little
interpretability compared to the original reward function. Despite this, the SAC agent still produces

https://i.imgur.com/uV1J3FQ.mp4
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results comparable in performance to the MCTS solver.



Chapter 6

Conclusion

In conclusion, we demonstrate the ability of a reinforcement learning-based controller in the drone
localization setting. In doing so, we addressed and solved several major challenges. The sensor system
[7] provided little information useful towards localization, so we construct a belief with a particle
filter to integrate information over time. Coarse discretization of the action space proved difficult for
discrete RL algorithms to handle, so we use the continuous control algorithm SAC instead. The true
objective in the localization task is difficult to optimize, so we introduce a surrogate reward function
that is more well suited for reinforcement learning. Finally, sample efficiency and logistic issues
prevent training on a real drone, so performing training with a simulation environment makes this
problem tractable [15]. The result is a controller that performs as well as previous controllers, but
with the added benefit of decreased runtime computation at the cost of offline training. Ultimately,
we find that moving the planning computation offline results in even greater computational cost when
modifying environment parameters. This tradeoff may be acceptable, however, if the seeker platform
is severely restricted in computational power and requires as compressed a controller as possible.

Future work will explore the transfer of these policies to actual hardware. Future work may also
explore the information-sharing relationship between multiple drones in the multiagent localization
scenario, or apply these information-gathering techniques to other tasks. Model-based methods for
control such as [16] may also alleviate some of the issues with sample inefficiency and training speed.
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