
Deep Reinforcement Learning and Transfer Learning with Flappy Bird
Cedrick Argueta1, Austin Chow1, Cristian Lomeli1

Department of Computer Science1, Stanford University, Stanford, CA 94305

Motivation Methods and Models

Conclusion and Future Work

References

Results
Reinforcement learning is a technique for solving certain decision 
tasks where an agent learns how to act in a real world environment. 
In recent years, major breakthroughs in RL have come from common 
video games. Since we grew up playing tons of video games, we 
wanted to explore the applicability of RL to the games Flappy Bird 
and Pixel Copter.

Problem
● We wish to use reinforcement learning to play the games Flappy 

Bird and Pixel Copter, determining whether RL can beat us and/or 
an expert in score.

● Q-learning does not generalize well to large state spaces, since 
many states would be left unexplored. We can use deep 
Q-learning, which uses a neural network to approximate the 
Q-value function and allows us to generalize to unseen states.

● Instead of using the game’s screen as input, we use feature 
engineering, which allows us to achieve the same level of 
performance without having to train a CNN to learn features for 
each game.

● We also aim to explore the impact of transfer learning to our task. 
In our case, transfer learning would be starting an instance of Pixel 
Copter training with weights already trained on Flappy Bird. 

Introduction 

Deep Q Learning with experience replay 
We use a neural network to approximate the Q function, and perform weight updates based on mini 
batches drawn from a cache of (s, a, r, s’) tuples.

For each episode, we do:

Table for hyperparameters 
● For our DQN, we tested several 

hyperparameters through trial and error to 
optimize the performance of both games.

● If not noted here, the hyperparameters 
were left as their default values.

Neural Network Architecture
● Input in R¹¹ and output in R², which are the 

Q-values for the two actions, jump or not 
jump.

● Each hidden layer pictured here has 
dimensionality of 2num nodes pictured

● The input layers and hidden layers are 
followed by ReLU layers, while the last layer is 
followed by a linear activation layer.

Challenges

Feature Engineering 
We had to come up with a way to make the state 
spaces similar to facilitate transfer learning, but didn’t 
want to use images as input.

We used the following features for both games:
● y position and velocity (orange arrow)
● distance to next terrain (blue line) and next next 

terrain (red line)
● absolute y positions of the next terrain (blue dot) 

and next next terrain (red dot)
Additionally, Pixel Copter had obstacles that had no 
analogue in Flappy Bird:

● distance to next block obstacle (purple line)
● absolute y positions of the next block obstacle 

(purple dots)

● Deep reinforcement learning was able to play both Pixel Copter 
and Flappy Bird better than we could, and for Flappy Bird in 
particular our agent reached superhuman levels of ability. 

● We did see transfer learning improve training times for Pixel 
Copter and absolute performance slightly, but only after we used 
some tricks to ease the process.

● We expect that transfer learning when using images as input 
would be much more impactful, since we wouldn’t need to 
relearn as much to interpret the game’s screen.

● In the future, we’d like to play around with games that have 
higher dimensionality in terms of observation and action spaces. 
There are many cool things in RL right now, like OpenAI’s Dota 
bot and DeepMind’s AlphaGo Zero!

6 runs of Flappy Bird training with the hyperparams to the left. We don’t show 
testing data here since each model can run indefinitely.

6 runs of Pixel Copter training with the hyperparams to the left. Test data is shown 
below, demonstrating little to no improvement for average ability of the agent when 
using transfer learning, but improvement in the best performance for each agent.

● Training required extensive time and compute
○ Opted to forgo image input and use feature engineering 

instead
● Difficult to pull together several packages for this task

○ Used ALE, PLE, Keras-rl, OpenAI Gym, tensorflow
● Transfer learning was traditionally used for CNNs

○ Changed observation spaces of both games to be as similar 
as possible

● Couldn’t use lots of data we collected since we changed our 
training and testing process several times

● Mnih, Volodymyr, et al. "Playing atari with deep reinforcement 
learning." Neural Information Processing Systems. (2013).

● Taylor, Matthew E., and Peter Stone. "Transfer learning for 
reinforcement learning domains: A survey." Journal of Machine 
Learning Research 10.Jul (2009): 1633-1685.

● Watkins, Christopher JCH, and Peter Dayan. "Q-learning." 

Machine learning 8.3-4 (1992): 279-292.


