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Abstract

Reinforcement learning’s growth in popularity in recent years is partly due to its
ability to play some video games with a level of mastery that no human can reach.
Transfer learning is popular in the field of deep learning, and using pre-trained
models on certain tasks speeds up training time and increases performance signifi-
cantly. In this project we aim to apply transfer learning to the popular video game
FlappyBird and analyze its performance compared to traditional reinforcement
learning algorithms.

1 Introduction

Reinforcement learning is a technique for solving certain decision tasks, where an agent attempts to
maximize a long-term reward through trial and error. This trial and error paradigm is better explained
through the lens of exploration and exploitation: the agent must decide whether it explores and
learns new information, or exploits the current policy to maximize reward. We primarily explore the
applicability of deep Q-learning, a deep reinforcement learning algorithm, to the FlappyBird game.
In addition, we explore the impact of transfer learning, a machine learning technique where a model
developed for a specific task is reused as the starting point for a model in a second task.

2 Related Work

The impetus behind our project is DeepMind’s paper, "Playing Atari with Deep Reinforcement
Learning". Mnih et al. were able to show how a Deep Q-Network could take raw image pixels from
an Atari game and estimate the Q function. [6] Their model also takes advantage of recent advances
in convolutional neural networks for image processing, a target network for stabilizing policy updates,
and experience replay for a more efficient use of previous experience. Transfer learning is the idea
that generalization occurs both within tasks and across tasks. [9] Deep reinforcement learning may
benefit from transfer learning, especially since convolutional neural networks are often used for
playing games. Since convolutional neural networks often learn similar features in the first, second,
etc. layers across a range of image classification tasks, it’s possible that transfer learning in the
context of reinforcement learning for video games can exploit this.

3 Game Mechanics

The game of FlappyBird can be described as follows: a bird flies at a constant horizontal velocity
vx and a variable veritcal velocity vy. The bird can flap its wings, giving it a boost in altitude and
velocity vy. The aim of the game is to avoid randomly generated pipes that restrict the flying area,
leaving only a small gap for the bird to fly through.



We model the problem as a Markov decision process with no knowledge of the transition probabilities
or reward function at every state. The transition probabilities are unknown, since each state consists
of the deterministic bird position and velocity, along with the non-deterministic pipe positions. The
only reward signal received from the game in its standard implementation is when the bird flies past a
pipe, giving us a reward of 1. This sparse reward makes it impossible for us to get an explicit reward
for each (s, a, s′) tuple. The start state sstart is the bird at some constant height, with no pipes on the
screen. The actions for every state are the same: the bird can flap its wings or not. The only exception
to this are the end states send, where the bird collides with a pipe or the ground. In these cases, there
are no actions to take, and the episode ends.

We have a similar model for PixelCopter, the game we perform transfer learning with. The games are
similar in terms of objective and action/observation spaces. The games differ in that the obstacles
in the game are inverted, i.e., instead of trying to fly between two pipes as in FlappyBird the player
must try to fly around a central pipe in PixelCopter. The floor and ceiling of the PixelCopter game
also follows a sinusoidal pattern, another deviation from FlappyBird.

4 Approach

The goal of our project is twofold: we aim to evaluate deep reinforcement learning algorithms on the
FlappyBird game, and also experiment with transfer learning to analyze the impact it makes on the
training process.

Vanilla learning methods like Q-learning are not well suited to this problem, since the state space
of the game is very large. The position of the bird and pipes are continuous values, and as such we
have an almost-zero probability of reaching a particular state that we’ve seen before. Thus, it will be
necessary to use either function approximation to generalize to unseen states or some form of deep
learning that can extract features automatically. We envision using Deep Q-networks as a nice foray
into deep learning, given our experience with Q-learning. The DQN model uses a neural network
to approximate the Q action-value function, and allows for better generalization than the standard
Q-learning approach.

Furthermore, we will demonstrate the ability for policies learned through deep reinforcement learning
on FlappyBird to transfer to other games, like Pixelcopter. This has been demonstrated before,
particularly through the use of convolutional neural networks for playing games directly from pixels.
[6] In our case specifically, we will develop a Q-network parameterized by weights θFlappyBird
that performs ‘well enough’ on FlappyBird, along with Q-networks parameterized by θPixelCopter
that perform ‘well enough’ on the game PixelCopter. These networks will be initialized through
Xavier initialization. [5] Once we have this, we will begin training new Q-networks parameterized by
θ′PixelCopter that were initialized with θFlappyBird. We then compare the training times and absolute
performance of the θ and θ′ models, demonstrating the increase in efficiency or performance that
transfer learning entails.

Finally, we use feature engineering to extract relevant features from the game’s state. DQN as seen in
Mnih et al. makes extensive use of convolutional neural networks to extract features directly from the
image representation of the game. Since we do not aim to experiment with CNNs for this purpose
at this time, we write our own custom feature extractors for each game such that state spaces are
very similar for both, in the hopes that this might aid with transfer learning. The features are color
coded in 1 to show the similar features across both games. Note that the features here are the ones
that we’ve defined after our preliminary experiments on PixelCopter, so they represent our feature
extractor on PixelCopter and not the original feature extractor.

4.1 Infrastructure

The infrastructure for the game comes mostly from the PyGame Learning Environment, OpenAI gym,
and keras-rl packages. The PyGame Learning Environment provides a nicely wrapped implementation
of FlappyBird, complete with sprites and the relevant game mechanics built in. [8] [3] [2] Keras-
rl provides a deep reinforcement learning framework that gives us a simple interface for training
agents. We take advantage of these two here, writing wrappers for the PLE game instance so that
it is compatible with keras-rl. [7] The keras-rl package additionally provides an implementation of
several algorithms that are applicable to FlappyBird, particularly Deep Q-networks and the SARSA
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Figure 1: The lines represent distances to several objects, while diamonds represent locations. The
arrow represents the vertical velocity of the player.

algorithm. For the transfer learning portion of the project, we saved weights info hdf5 files with
the Keras package. The neural networks and much of the other deep learning architecture was also
created in Keras, with a TensorFlow backend. [4] [1] This allowed us to monitor training time and
other metrics inside TensorBoard.

Code for our project can be found at this link: https://github.com/cdrckrgt/cs221-project.

5 Model

In this section, we describe the DQN algorithm and how it applies to our task. We use a modified
version of the algorithm described in the 2013 DeepMind paper.

Again, we model the environment E as a Markov decision process with no knowledge of the transition
probabilities or reward function at every state. There is a set of actions that may be taken at every
time-step, designated A. Each interaction between the agent and its environment at time t produces
an observation xt ∈ Rd and reward rt, where d is the dimensionality of the environment.

As in the standard Q-learning algorithm, we consider sequences of observations, actions, and rewards
x1, a1, r1, . . . , xt, at, rt as the state of E at time t. The objective of the agent is to maximize its future
reward, defined as:

Rt =

T∑
t′=t

γt
′−trt′ (1)

such that T is the termination time-step of the game. Then the optimal Q-value function is defined as
follows:

Q∗(s, a) = max
π

E[Rt | st = s, at = a, π] (2)

such that π is a policy that maps states to actions. So far we have described steps to arriving at the
Q-learning algorithm described by Dayans and Watkins. [10] The DQN algorithm presented by
DeepMind makes numerous improvement on this algorithm by introducing a non-linear function
approximator and experience replay.

5.1 The Q-network

Since the vanilla Q-learning algorithm does not generalize well to state spaces as large as those
encountered in video games, we use a neural network to approximate the Q-value function. Then
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we have a neural network parametrized by weights θ such that Q(s, a; θ) ≈ Q∗(s, a). At every
iteration of training i, we minimize the squared error between the current Q-function and the optimal
Q-function, according to the loss function:

Li(θi) = Es,a∼ρ(·)[(yi −Q(s, a; θi))
2] (3)

where yi = Es′∼E [r + γmaxa′ Q(s′, a′; θi−1 | s, a] and ρ(s, a) is a probability distribution over
states and actions. The intuition behind this loss function is that we are minimizing the distance
between our target, which is the maximum expected future reward for this state and the previous
iteration’s weights, and our current Q value. We are effectively getting closer and closer to the true Q
values every training iteration. To minimize this objective function, we update the weights according
to the gradient:

∇θiLi(θi) = Es,a∼ρ(·)[(r + γmax
a′

Q(s′, a′; θi−1)−Q(s, a; θi))∇θiQ(s, a; θi)] (4)

And we’ve now arrived at the Deep Q-network algorithm that we can apply to our task. It’s important
to note that the original DQN paper applies this algorithm to raw pixel vectors as each xt, whereas
we use the internal game state for each xt. This allows us to achieve the same level of performance
in a much quicker fashion, since we don’t need to spend the extra compute power on training a
convolutional neural network to learn features for each game. The algorithm, lifted from Mnih’s
paper, is described in 1.

Algorithm 1 Deep Q-learning with Experience Replay
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1,M do
4: Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
5: for t = 1, T do
6: With probability ε select a random action at
7: otherwise select at = maxaQ

∗(φ(st), a; θ)
8: Execute action at in emulator and observe reward rt and observation xt+1

9: Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
10: Store transition (φt, at, rt, φt+1) in D
11: Sample random minibatch of transitions (φj , aj , rj , φj+1)

12: Set yj =
{
rj for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′; θ) for non-terminal φj+1

13: Perform a gradient descent step on (yj −Q(φj , aj ; θ))
2 according to equation 4

14: end for
15: end for

5.2 Experience Replay

Additionally, the algorithm presented in Mnih’s paper makes use of experience replay to smooth
learning and prevent divergence. Rather than performing gradient updates on each consecutive
sample, samples are stored in a ring buffer and sampled randomly during the learning phase of
the algorithm. This has the effect of improving sample efficiency and removing the dependence of
each training update on the previous training update. Adding experience replay makes the problem
conceptually similar to supervised learning, where we continuously store and update a cache of
‘experience’ and fit our Q-function to it.

5.3 Target Network

Finally, we make use of a target network to further stabilize the training process. Note that during our
gradient descent, the weights that produce our target values shift every iteration. Instead of using
these rapidly shifting weights, we copy the parameters of the training network θtraining to a second,
identical model θtarget. With this identical model, we may compute the same targets, albeit with less
variance by only updating the θtarget to match the θtraining with some fixed, low probability at every
iteration.
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5.4 Annealed ε-greedy Policy

Rather than use the standard ε-greedy policy, we opted to use a policy that annealed ε from some
value α to some value β over training. Our goal was to incentivize exploration early on, but revert
back to the usually ε-greedy policy after some about of training. This came from our intuition that
our model would not know a great deal early on in the training, so it was most effective to explore the
game’s states than exploit a weak policy.

5.5 Model Architecture

Since we use as input to the Q-network the internal game state representation as opposed to the raw
pixel inputs, we don’t make use of a convolutional neural network to learn features directly from
the game’s pixels. We instead make use of a multi-layered perceptron that takes as input the game’s
state in vector form. In the case of FlappyBird, the state vector is a vector in R11, and contains the
bird’s position, velocity, and the distance, top, and bottom positions of the next two pipes. We also
added three null features to the game’s state, since PixelCopter had a feature representation in R11.
PixelCopter had the same features as FlappyBird, with three additional ones: the distance to the next
obstacle and the positions of the top and bottom of the obstacle. We have three fully connected hidden
layers, with dimensionality 256, 128, and 16. Each layer was followed by a ReLU activation, while
the output layer was instead followed by a linear activation. This leaves us with 38,066 trainable
parameters, a relatively small network compared to those that are used to learn games from pixel
input. The outputs of the Q-network for each game were the Q-values of all actions in the action
space for that game. In the case of FlappyBird, the output was two Q-values in R, one for the action
to jump, and the null action.

6 Results

6.1 DQN on FlappyBird

The DQN agent trained on FlappyBird reached superhuman levels of ability. The final hyperparame-
ters are described in 1. We see in 2 the variance in episode reward over different random seeds for the
FlappyBird game. Each run was trained over 75,000 iterations, and we see the ability for the DQN
agent to learn to play the game sometimes but fail other times. The DQN agent performs well above
the ability of the average human when it does learn to play the game, since it averages 14,177 steps
before dying. At 24 frames per second, this comes out to be 10 minutes without dying!

Figure 2: 6 different runs for DQN on FlappyBird. The x-axis shows episode number, while the
y-axis shows episode length.
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Hyperparameters for Xavier-initialized networks

FlappyBird Hyperparameters
Target Model Update 1e-2

Learning Rate 1e-3
γ 0.99

Annealed ε 0.2→ 0.05
Annealing Steps 30,000
Warm-up Steps 100

Memory Size Limit 50,000
Training Steps 75,000

Reward Profile
tick 0.1

passed pipe 1.0
collided −10.0

PixelCopter Hyperparameters
Target Model Update 1e-2

Learning Rate 4e-4
γ 0.99

Annealed ε 0.2→ 0.05
Annealing Steps 75,000
Warm-up Steps 100

Memory Size Limit 100,000
Training Steps 150,000

Reward Profile
tick 0.1

passed pipe 1.0
collided −10.0

Table 1: These hyperparameters were obtained with lots of trial and error. If not noted here, the
hyperparameter was left as the default value in Keras.

6.2 DQN on PixelCopter

The DQN agent trained on the version of PixelCopter that was pulled from the source repo did not
perform well. We saw that despite trying longer training times and optimizing several hyperparam-
eters, the agent would not learn to play the game from the feature representation that the creators
shipped with the game. The training performance for the original feature extractor on PixelCopter
can be seen in 3. The original feature extractor did not contain information about the floor and ceiling
of the environment, leading the agent to ignore the floor and ceiling and eventually crash into them.

Figure 3: 3 different runs for vanilla DQN on PixelCopter without optimal feature engineering. The
x-axis shows episode number, while the y-axis shows episode length.

We changed the features that were extracted from the game mostly for this reason, but also because
we wanted the feature representations of PixelCopter and FlappyBird to be as similar as possible for
the transfer learning portion of our experiments. As seen in 1, we changed the features of PixelCopter
to include the positions of the next floor and ceiling pair along with the next next floor and ceiling
pair. This gave the agent the information nexessary to plan its trajectory so that it wouldn’t crash into
the walls.
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So our updated feature extractor gave information on the floor and ceiling of the PixelCopter
environment, and allowed the DQN agent to reach at least human level ability on the game. The
improved training results can be seen in 4

Figure 4: Several runs of PixelCopter training after installing a new feature extractor. The x-axis
shows episode number, while the y-axis shows episode length.

While the training runs for both the original feature extractor and updated feature extractor look
similar, the testing results showcase the superiority of our feature extractor. The final testing results
for our PixelCopter agents can be seen in 2. Note that the maximum score is the average maximum
score attained on each run, showing us the absolute highest that each agent can perform.

6.3 Transfer Learning on PixelCopter

We implement this in a couple of different ways, with a fully trainable initialized network, and with
an initialized network with frozen layers, specifically all layers but the first frozen. There were two
ways in which we tried transfer learning: simply initializing all weights with the final weights from
FlappyBird, and also initializing all weights with the final weights from FlappyBird but then freezing
some layers. The latter implementation provides the effect of reducing the number of parameters
needed for optimization, giving us a faster training time. Notice in 5 how we don’t achieve the same
levels of performance as 4.

Figure 5: 4 different runs for the DQN on PixelCopter, using weights pretrained on FlappyBird. The
x-axis shows episode number, while the y-axis shows episode length.
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PixelCopter Average Steps Per Episode
No TL or Feature Extractor No TL TL TL with Frozen Layers

Mean 246.47 373.52 348.58 148.05
Standard Deviation 193.91 377.32 306.87 116.89

Avg. Max 759.1 2552.0 1434.0 612.4

Table 2: Several agents’ performances on PixelCopter. Note how transfer learning with frozen layers
performs markedly lower than the other agents.

The final results showed how the DQN agent trained without transfer learning and with our improved
feature extractor had the best performance on PixelCopter.

7 Analysis

7.1 Effectiveness of Feature Engineering

The graphs shown in 3 and 4 demonstrate the effectiveness of feature engineering for PixelCopter.
With properly chosen features, we saw a vast improvement in performance, to the point where we
went from effectively random movements to at least human level ability in the game. Choosing the
features wasn’t a particularly difficult process – we simply modeled the features after those found in
FlappyBird, since we already knew the features that FlappyBird used and our DQN agent was able to
learn FlappyBird effectively in a relatively short amount of time. The logic behind adding the next
and next next features was that the agent needed to ‘see’ what was ahead to be able to avoid it, just
like humans do!

In addition to the gains from choosing proper feature extractors, the decision to use feature extractors
over raw pixel input proved to be a prudent choice. It is well documented that training a DQN agent
from scratch with pixel inputs takes hundreds of thousands or even millions of iterations. We saw
results from our feature extracted version of DQN after only tens of thousands of iterations – a great
improvement.

7.2 Effectiveness of Transfer Learning

The aim of using transfer learning was to improve the average performance of DQN on PixelCopter
to superhuman levels, as we did with FlappyBird. Despite trying multiple model architectures for
transfer learning, with different layers frozen vs. not frozen, we weren’t able to determine that transfer
learning in this specific task was effectual. In particular, trying to freeze the hidden layers of the
model was ineffective because we simply could not encode enough information on how to play the
game in solely the input and output layers. This was especially prevalent because of how we used
dummy features making the FlappyBird observate space similar to the PixelCopter observation space
– since the dummy features always had values of 0 in FlappyBird, it was difficult to learn the new
features in PixelCopter that weren’t always 0. Freezing transferred layers did have one tiny benefit –
the reduction in number of training parameters made training and inference slightly faster.

We theorize that the majority of the gains transfer learning has shown on reinforcement learning tasks
in gameplay have come from the convolutional neural network not having to be trained from scratch,
and less so from the fully connected layers that follow. Because we opted for feature engineering
over a CNN, we lost out on the performance gain that would have resulted from transfer learning.
The relatively small size of the neural net that approximated the Q-function didn’t benefit very much
in terms of training speed, even when the state spaces of the game were made to be as similar as
possible.

7.3 Expansion to Pixel Inputs

The vanilla DQN model trained on PixelCopter did not generally perform well, even with much
longer training times and hyperparameter tuning. Our hypothesis is that the state vector that the game
produces doesn’t yield enough information about the game for the model to learn how to play. Only
the wall directly above and below the Pixelcopter is shown to the model, leaving the rest of the terrain
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unknown until the PixelCopter flies past it. One way to approach this issue is to simply feed the pixel
representation of the game’s state as image input to the model, which would necessitate the use of
CNNs. We don’t know the effectiveness of transfer learning on solely fully-connected layers, and
hopefully this goes to show us that we might want to continue with CNNs and learning from pixel
input in the future.

Because of what was discussed on the effectiveness of transfer learning, many times throughout
the project we considered moving towards pixel input. The result would be more impressive – not
having to encode information about the game would make this end-to-end reinforcement learning
task much cleaner and robust. We opted not to do this early on because we had little experience with
convolutional neural networks and image tasks. This, combined with our desire to iterate quickly over
model architectures, hyperparameters, etc. pushed us to use feature engineering over convolutional
neural networks.

Now that we know the ineffectiveness of transfer learning on solely fully connected layers, we would
have definitely chosen to use pixels as input.

8 Conclusion and Future Work

Deep reinforcement learning has proved to be an excellent player of FlappyBird and PixelCopter,
considering that with both games on the vanilla DQN agents, we could not beat the trained agent. Our
hopes of transfer learning speeding up training time and improving absolute performance were not
met, and we determined that transfer learning didn’t have a significant impact on the training process.

In the future, we’d extend our experiment to compare our feature extractors performance to that of a
convolutional neural network. We think that our methodology applied to CNNs would have led to
a much more successful experiment. In addition to this, we hope to apply reinforcement learning
to games with higher complexity, much like what OpenAI has done with Dota and DeepMind has
done with Go. On an even wider scale, we foresee that many computationally difficult optimization
problems can be cast to reinforcement learning problems, where we might achieve decent approximate
solutions in smaller timeframes than conventional techniques. This could impact a wide array of
peoples, industries, and technologies around the world, so we think it’s an exciting thing to study!
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