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Results
Localization is a controls problem that deals with minimizing 
uncertainty over position. It has applications in robotics, autonomous 
vehicles, aerospace, and more.

Overview
In this problem, a drone moves in a 2D box, looking for a moving 
radio transmitter that it can detect with an noisy antenna.

We implement the TD3 algorithm, a slight modification of the 
commonly studied DDPG algorithm, and use it to control a simulated 
drone in a bearing-only localization task. We discuss the tradeoffs of 
continuous control vs. discrete control through DQN and a greedy 
solver, especially with respect to particle filters and partial 
observability.

Ultimately, all learning methods outperform the greedy solution, but 
continuous control does not outperform discrete control.

TD3 and DDPG are both actor-critic algorithms for reinforcement learning, meaning that they directly 
optimize a policy w.r.t. expected return and maintain a value function to help. The left equation shows the 
solution to a partially observable MDP, while the right equation shows the basic policy gradient used in 
DDPG and TD3.

Simulation Environment

● Control from the raw particle filter might yield better results, as 
particle filters are often very non-gaussian and mean/std doesn’t 
accurately represent belief.

● Training time is disappointing, is there a way to leverage the 
particle filter as a model to do real model-based RL instead of 
model-free RL?

● The simulations conform to specifications for an actual drone 
contained in SISL, so maybe these policies can actually be flown!

Training is performed in an open-source drone simulation 
environment, PyFEBOL. Check it out on GitHub, I wrote it!

The drone takes a noisy measurement of the target with the antenna. 
The particle filter is updated according to this measurement, and the 
controller uses this filter to perform inference. The drone must move to 
minimize uncertainty of the target. The target moves with constant 
velocity, and the drone moves with constant speed.
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Observations
The drone takes imperfect observations of the environment with a radio antenna, and integrates this 
information into a particle filter. Each state is: the drone’s (x, y, h) position and heading, and the particle 
filter’s mean (x, y) position and velocity (dx, dy). Note: the filter is necessarily stochastic!
The particle filter can be seen as a form of feature engineering or model-based RL: rather than directly 
use the bearing observation (30° east) we create a model of the environment and use that for inference.

Rewards
The goal of the controller is to localize the target while respecting a keep-out distance around the target. 
The target is localized when entropy in the particle filter is low.

TD3 uses two critics for double Q learning, introduces noise to the actor policy for policy smoothing, and 
delays policy updates for reduced variance in policies generated.
Each neural network in DQN, DDPG, and TD3 has approximately the same structure: seven state 
variables, hidden layers of sizes 512 and 384, then output dependent on the function approximated.

Tracking Error Collision Rate Average Cost

Greedy 30.5m 1.8% -4.18

DQN 5.4m 62% -2.37

DDPG 20.1m 0% -3.73

TD3 13.48m 0% -3.75

Localization quality is represented by tracking error: if we have low 
tracking error, our mean hypothesis for the target position is good.
Collision rate shows the tradeoff of better observations vs. collisions, 
where a higher rate indicates riskier behavior.
Average cost combines these two metrics: it is the sum of nats of 
entropy in the particle filter and probability of collision according to 
the particle filter.

Discussion
The greedy method acts as expected: since it takes the lowest cost 
action at every step, it never plans ahead to incur some penalty to 
get close to the target and then receive a much higher reward.

DQN performs fabulously, learning that the long-term reward from 
incurring the collision penalty is greatly outweighed by reduction in 
entropy. This also validates our choice of observations, showing that 
learning the optimal policy is possible.

TD3 and DDPG improve on the greedy solver’s tracking error, but fail 
to learn that collisions lead to a more optimal policy. Why? It’s likely 
due to a minimal hyperparameter search, as continuous control often 
takes longer during training (meaning less trials) and is more 
sensitive to hyperparameter choice.

Actions
In the discrete setting, the controller selects one of 24 directions (radial about the drone) to travel in. In 
the continuous setting, the controller selects the degree indicating the heading.


