
Continuous Control in Bearing-only Localization
Cedrick Argueta

cedrick@cs.stanford.edu
Department of Computer Science, Stanford University, Stanford, CA 94305

Motivation Algorithms and Model

Future Work

References

Results
Localization is a controls problem that deals with minimizing
uncertainty over position. It has applications in robotics, autonomous
vehicles, aerospace, and more.

Overview
In this problem, a drone moves in a 2D box, looking for a moving
radio transmitter that it can detect with an noisy antenna.

We implement the TD3 algorithm, a slight modification of the
commonly studied DDPG algorithm, and use it to control a simulated
drone in a bearing-only localization task. We discuss the tradeoffs of
continuous control vs. discrete control through DQN and a greedy
solver, especially with respect to particle filters and partial
observability.

Ultimately, all learning methods outperform the greedy solution, but
continuous control does not outperform discrete control.

TD3 and DDPG are both actor-critic algorithms for reinforcement learning, meaning that they directly
optimize a policy w.r.t. expected return and maintain a value function to help. The left equation shows the
solution to a partially observable MDP, while the right equation shows the basic policy gradient used in
DDPG and TD3.

Simulation Environment

● Control from the raw particle filter might yield better results, as
particle filters are often very non-gaussian and mean/std doesn’t
accurately represent belief.

● Training time is disappointing, is there a way to leverage the
particle filter as a model to do real model-based RL instead of
model-free RL?

● The simulations conform to specifications for an actual drone
contained in SISL, so maybe these policies can actually be flown!

Training is performed in an open-source drone simulation
environment, PyFEBOL. Check it out on GitHub, I wrote it!

The drone takes a noisy measurement of the target with the antenna.
The particle filter is updated according to this measurement, and the
controller uses this filter to perform inference. The drone must move to
minimize uncertainty of the target. The target moves with constant
velocity, and the drone moves with constant speed.

● L. Dressel and M. J. Kochenderfer. Hunting drones with other drones: Tracking

a moving radio target. ICRA 2019

● L. Dressel and M. J. Kochenderfer. Pseudo-bearing measurements for

improved localization of radio sources with multirotor uavs. ICRA 2018

● V. Mnih, et al. Playing atari with deep reinforcement learning. CoRR,

abs/1312.5602, 2013.

● T. Lillicrap, et al. Continuous control with deep reinforcement learning. ICLR

2016

● S. Fujimoto, et al. Addressing function approximation error in actor-critic

methods. CoRR, abs/1802.09477, 2018.

Observations
The drone takes imperfect observations of the environment with a radio antenna, and integrates this
information into a particle filter. Each state is: the drone’s (x, y, h) position and heading, and the particle
filter’s mean (x, y) position and velocity (dx, dy). Note: the filter is necessarily stochastic!
The particle filter can be seen as a form of feature engineering or model-based RL: rather than directly
use the bearing observation (30° east) we create a model of the environment and use that for inference.

Rewards
The goal of the controller is to localize the target while respecting a keep-out distance around the target.
The target is localized when entropy in the particle filter is low.

TD3 uses two critics for double Q learning, introduces noise to the actor policy for policy smoothing, and
delays policy updates for reduced variance in policies generated.
Each neural network in DQN, DDPG, and TD3 has approximately the same structure: seven state
variables, hidden layers of sizes 512 and 384, then output dependent on the function approximated.

Tracking Error Collision Rate Average Cost

Greedy 30.5m 1.8% -4.18

DQN 5.4m 62% -2.37

DDPG 20.1m 0% -3.73

TD3 13.48m 0% -3.75

Localization quality is represented by tracking error: if we have low
tracking error, our mean hypothesis for the target position is good.
Collision rate shows the tradeoff of better observations vs. collisions,
where a higher rate indicates riskier behavior.
Average cost combines these two metrics: it is the sum of nats of
entropy in the particle filter and probability of collision according to
the particle filter.

Discussion
The greedy method acts as expected: since it takes the lowest cost
action at every step, it never plans ahead to incur some penalty to
get close to the target and then receive a much higher reward.

DQN performs fabulously, learning that the long-term reward from
incurring the collision penalty is greatly outweighed by reduction in
entropy. This also validates our choice of observations, showing that
learning the optimal policy is possible.

TD3 and DDPG improve on the greedy solver’s tracking error, but fail
to learn that collisions lead to a more optimal policy. Why? It’s likely
due to a minimal hyperparameter search, as continuous control often
takes longer during training (meaning less trials) and is more
sensitive to hyperparameter choice.

Actions
In the discrete setting, the controller selects one of 24 directions (radial about the drone) to travel in. In
the continuous setting, the controller selects the degree indicating the heading.

