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Abstract

In this work we model localization in the context of
source seeking with drones. Specifically, we show how an
autonomous drone fitted with radio antennas can minimize
uncertainty over belief of a radio target. We model the prob-
lem as a belief Markov decision process and use deep deter-
ministic policy gradient and twin delayed deep determinis-
tic policy gradient as controllers.

1. Introduction
Tracking a moving radio target is useful in a variety of

situations. An unauthorized drone could be disrupting air-
port operations, causing delays, or interfering with aircraft.
A wildlife radio tag could help with studying migration pat-
terns of migrant animals. Sophisticated control is often nec-
essary in localization – sensors are often noisy and it’s dif-
ficult to encode priors on the target’s movement in some
situations. In addition to localization, we study the added
constraint of avoiding near collisions with the target: e.g. a
drone tracking a wildebeest should not get so close that it
frightens the animal. The introduction of a near collision
penalty is what makes this problem interesting: the opti-
mal policy is often a balance between information gather
actions (getting close to the target to receive better observa-
tions) and respecting the collision penalty. In this work, we
model this problem as a dynamic system and apply two con-
tinuous control algorithms, deep deterministic policy gradi-
ent (DDPG) [1] and twin delayed DDPG (TD3) [2] as so-
lution methods. These methods are compared to deep Q-
learning (DQN) [3] and a greedy method as baselines. We
show that continuous learning-based methods improve on
a greedy baseline in terms of localization quality and colli-
sion rate, however, further work must be done to show that
continuous control dominates discrete control.

2. Related Work
This work primarily builds off of work done on efficient,

low-cost localization with drones. Drones have been used
in localization because of their ease of use and mobility [4],
[5], [6]. Particle filters in localization and modeling tasks

are explored in [4] and [5]. Traditional control with a re-
ceding horizon controller is compared with reinforcement
learning in [5], while [4] compares a greedy controller with
Monte Carlo tree search. We base our dynamics models on
those in [4] and take cues on learning algorithms for control
from [5].

The sensor model used in this work is based off of [7],
which describes how antennas may be used to generate
bearing measurements relative to a drone. While sensing
is not the primary aim of this paper, it is prudent to note that
the sensor choice often dictates the difficulty of localization.
Other works demonstrate localization with sensors that are
easier to implement in practice but yield lower information
that the sensor used in this work [8].

3. Mathematical Models
3.1. Drone Dynamics

We assume that the target is another drone, so the major
components of our environment are a seeker drone and a tar-
get drone. The drone dynamics are exactly those described
in [4]. The seeker drone state at time t is xt = [xnt , x

e
t , x

h
t ]ᵀ,

where xnt and xet are the seeker’s north and east coordinates
and xht is the seeker’s heading measured east of north. The
state described here does not contain velocity or altitude as
simplifying assumptions. The drone follows a first-order
motion model, so the state after applying a control input ut
for duration ∆t the new state is

xt+∆t = xt + ut∆t (1)

The target drone state at time t is θt = [θnt , θ
e
t ]ᵀ, where

θnt and θet are the target’s north and east coordinates. The
target drone is assumed to move with a constant veloc-
ity θ̇ = [θ̇nt , θ̇

e
t ]ᵀ. The drone follows a first-order motion

model, so the state after ∆t is

θt+∆t = θt + θ̇t∆t (2)

3.2. Sensor Model

The bearing from the seeker drone to the target drone is

βt = arctan
θet − xet
θnt − xnt

(3)
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when measured east of north. Configured properly, a di-
rectional antenna and omnidirectional antenna can give es-
timates of the relative bearing of the target drone. [7]

At time t, the seeker drone makes measurement zt ∼
N (βt−xht , σ2), which is a bearing in the interval [0◦, 360◦].
It is assumed that these measurements are normally dis-
tributed about the true relative bearing with some variance
to account for sensor error. In this work, the standard devi-
ation of the sensor measurements is assumed to be 5◦.

3.3. Particle Filter

The seeker drone maintains a belief of the possible lo-
cation of the target drone, which is modeled with a particle
filter [9], [10]. It is useful to think of a particle filter as a
type of hidden Markov model: as evidence from the sen-
sor is received, we can update our belief of the true state
of the system. Belief at time t is represented by a set bt
of N particles, each representing a hypothesis of the target
drone’s pose. Updates are made to the particle filter at every
timestep to improve the belief’s accuracy.

The belief update consists of three steps. The first step
is the prediction step, where each particle is propagated ac-
cording to the dynamics described in equation 2. Noise is
added to the dynamics to prevent particle deprivation, a sit-
uation that arises when all particles converge to a hypothesis
that doesn’t accurately represent the true state. The second
step is the weighting step, where each particle is assigned
a weight according to how probable an observation zt is
given the particle’s position. The third step is resampling,
where particles are sampled according to these weights with
replacement. In this work, we use stratified resampling to
aid in maintaining an accurate estimate of the target while
ensuring resiliency to particle deprivation.

In planning, E [bt] is used by the controller. Namely, this
provides the controller with the estimate of θt and θ̇t. With
the mean of the particle filter, we are effectively performing
feature engineering – rather than directly use the relative
bearing provided by the sensor, we construct a particle filter
and use the estimates instead. This helps to cut down on the
noise introduced by inaccuracies in the sensor model, alle-
viating some of the stochasticity that the learning algorithm
must deal with.

3.4. Belief Markov decision process

3.4.1 States

The problem described is actually a partially observable
Markov decision process (POMDP), as the agent cannot
fully observe the environment at each step t. Since it is dif-
ficult to incorporate a belief-dependent reward (such as en-
tropy minimization) into a POMDP, we hereafter model the
problem as a belief MDP where each state is a tuple of the
fully observable part of the true state (seeker position) and

the belief of the partially observable part of the true state
(estimate of target position and velocity from the particle
filter) [4]. In our analysis, each state is a tuple st = (xt, bt).
However, our controller makes a simplification and uses the
mean estimate of the particle filter for states, so the con-

troller actually uses st = (xt, θ̂t,
ˆ̇
θt).

3.4.2 Actions

In the discrete setting used for the greedy and DQN con-
trollers, the seeker drone travels with constant velocity in
one of 12 directions spaced radially about the seeker drone,
effectively allowing the seeker to choose any multiple of
30◦ as a heading. In the continuous setting used for the
DDPG and TD3 controllers, the seeker drone must instead
choose a heading to travel towards, with a full 360◦ range
of motion.

3.4.3 Reward Function

Our reward function for radiolocation captures the desire
to maintain an accurate and precise estimate of the target’s
location while also maintaining an acceptable distance from
the target.

A precise belief is one that has low uncertainty over the
target’s position. Minimization of this uncertainty is equiv-
alent to minimization of the entropy of the belief distribu-
tion. Particles in the filter are first discretized into M bins.
Entropy can then be defined as:

H(bt) = −
M∑
i=1

b̃t[i] log b̃t[i] (4)

where b̃t is the proportion of particles in each bin.
Near-collisions are penalized to encourage the seeker to

keep a safe distance. The penalty term contains only the be-
lief of the belief of the target’s position rather than the true
target position. This is to encourage the seeker to maintain
a distance from the particles during evaluation. If the be-
lief is representative of the true state, then the seeker will
maintain a safe distance. If the belief is not representative
of the true state, then the seeker will at least maintain a dis-
tance from the belief, which still might contain a noisy or
partially accurate model of the target’s motion. Our near-
collision penalty is

C(bt, xt) = E
bt
1(‖xt − θ̂t‖ < d) (5)

where 1 is an indicator function and d is the safe distance
we wish the seeker to maintain. In this work, d = 15m.

The terms are combined to produce our full reward func-
tion:

R(st) = H(bt)− λC(bt, xt) (6)
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where λ is a coefficient controlling the tradeoff between en-
tropy minimization and collision avoidance. In this work,
λ = 1.

4. Methods

4.1. DDPG

DDPG is an off-policy reinforcement learning algorithm
for use with continuous action spaces [1]. The algorithm is
detailed in algorithm 1.

The algorithm works by maintaining an actor function
and critic function, both approximated by neural networks.
The actor function receives as input the state of the environ-
ment, and outputs an action in the continuous action space.
The critic function receives as input the state of the envi-
ronment and the action taken at that time, and outputs the
expected value attained from taking that transition. By min-
imizing the mean squared error between each yi and output
ofQ, we approximate theQ value function. The actor func-
tion is optimized directly to output actions that maximize
expected return.

A variety of modifications were needed to make DDPG a
viable solution method in the context of deep reinforcement
learning. First, an experience buffer is needed to minimize
correlations between samples. Second, target networks are
required to stabilize learning. Both of these modifications
were introduced in [3], where the popular Q-learning algo-
rithm [11] was modified with neural networks to play Atari
video games.

4.2. TD3

Twin delayed deep deterministic policy gradient (TD3)
proposes further modifications to the original DDPG algo-
rithm to improve stability and improve learning [2]. Three
main improvements are proposed.

4.2.1 Twin Q networks

In an improvement to DQN, [12] implements a variant of
the DQN update that reduces overestimation common to
value function methods. Such an update in DDPG is dif-
ficult to use because the update will then use the current
policy rather than the target policy in each yi. Instead, a
second target Q network is used. Each learning target then
becomes yi = ri + γ min

j=1,2
Q′j(si+1, µ

′(si+1)). The mini-

mum here promotes underestimation of the value function,
which is preferable to overestimation.

4.2.2 Delayed Policy Updates

The second improvement is a delay in updates for the actor
network and target networks. The goal of this modification

Algorithm 1 Deep Deterministic Policy Gradient

1: Initialize replay memory D
2: Initialize actor network µ and critic network Q
3: Initialize target networks µ′ and Q′

4: for episode = 1,M do
5: Initialize sequence s1

6: Initialize random process N for exploration
7: for t = 1, T do
8: Select action at = µ(st) +Nt

9: Execute action at and observe reward rt and ob-
serve new state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch of N transitions

(si, ai, ri, si+1)
12: Set yi = ri + γQ′(si+1, µ

′(si+1))
13: Update critic by minimizing loss equal to MSE

of yi = Q(si, ai)
14: Update actor with policy gradient ∇J ≈

1

N

∑
i

∇aQ(s, a)∇µ(s)

15: Update target networks
16: end for
17: end for

is to improve the gradient steps taken by the policy dur-
ing updates. The actor is then updated against a critic with
lower variance, as more critic updates occur compared to
the actor. In practice, the actor is updated once for every
two critic updates.

4.2.3 Target Policy Smoothing

The final improvement is with the learning targets them-
selves. The authors aim to fit the value function around a
region of actions rather than a deterministic action. The
reasoning here is that inaccurate value function approxi-
mation may include peaks or dips in the area around a
particular action, resulting in wildly different value es-
timates for similar actions. Adding a smoothing fac-
tor to the updates in the form of random noise com-
bats this by enforcing similar value function estimates
for similar actions. Then the learning update becomes
yi = ri + γ min

j=1,2
Q′j(si+1, µ

′(si+1) + ε), where ε ∼

clip(N (0, 0.2),−0.5, 0.5).

5. Results
5.1. Experimental Setup

Experiments were performed using the open source
drone simulation package PyFEBOL [13]. The seeker and
target drones live inside a 200m × 200m area. To best
describe the target drone placement, imagine that there is
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a 180m × 180m box within the search environment, cen-
tered such that there is 10m of space all around the smaller
square. The target drone starts at a random corner of this
smaller square and follows an edge to an adjacent corner at
a speed of 1.7m

s . The seeker drone starts each episode at
the center of the search area, and can move at 5m

s . Each
episode runs for 100 steps, giving ample time for the seeker
drone to catch the target drone and accumulate rewards.

The particle filter used to model the environment has
2000 particles and is discretized into a 50 × 50 matrix for
entropy calculation. It is important to note that the parti-
cle filter is necessarily stochastic, as noise is added during
particle prediction so that the filter does not degenerate to a
single particle. This stochasticity is difficult for the con-
trollers to handle – it’s possible that a controller takes a
‘good’ action but doesn’t receive a matching good reward,
as the particle filter just so happened to concentrate belief in
a different way. This stochasticity works itself out in expec-
tation, but in real systems this affects the sample efficiency
of our learning algorithms greatly.

Hyperparameters for the learning algorithms used are
available in table 1. All training was performed on a Google
Cloud Platform virtual machine with 15 GB of RAM and
an Nvidia Tesla K80 GPU. Batch size was chosen to max-
imize usage of the GPU, while memory size was chosen to
maximize RAM usage. Learning rate was chosen empri-
cally, where the chosen rate was the best performing out of
all rates tried. All neural networks used had a very similar
structure. Actor networks used st for input (7 floats: seeker
position and heading, estimated position of target, estimated
velocity of target) and were followed by two hidden layers
of size 512 and 384 with ReLU activations. Critic networks
were very similar, but appended the action taken (1 float:
heading) to the input layer. Output depended on the func-
tion to be approximated: critic networks had the raw values
of the neural network as output, while actor networks used a
Tanh activation function to scale output between [−1,−1].

5.2. Metrics

5.2.1 Tracking Error

Tracking error is defined as ‖θt− θ̂t‖. It is the error that the
particle filter has with respect to target position. Tracking
error is included as a more intuitive measure of filter accu-
racy than nats of entropy. It is easier to interpret a tracking
error of 5m than an entropy of 3.0 nats.

5.2.2 Collision Rate

As per our reward function in equation 6, we seek to min-
imize the probability of near collisions with our controller.
The collision rate is the percentage of the episode that the
seeker is within collision distance of the target.

batch size memory size learning rate target update
DQN 128 100000 0.0005 0.0005
DDPG 128 100000 0.001 0.001
TD3 128 100000 0.001 0.001

warmup steps eps start eps end eps decay
DQN 1000 0.9 0.1 1666
DDPG 10000 0.9 0.1 1666
TD3 10000 0.9 0.1 1666

Table 1: Hyperparameters used during training.

5.2.3 Average Cost

The cost represented in equation 6, averaged over all steps
in the episode. Depending on the value of λ, the opti-
mal policy will change to maximize different objectives. If
λ = 0, then the optimal policy is for the seeker drone to
hover over the target drone, minimizing entropy as much as
possible with no regard to near collisions. Why is it opti-
mal to minimize distance to the target drone when sensor
accuracy is the same at all distances? This is because the
information gathered closer to the target is greater: the par-
allax subtended by the target drone moving with respect to
the seeker drone is larger when the seeker is closer to the
target. The filter is then more likely to update to a better
representation of the true state. If λ becomes large, it is
optimal to avoid all particles so that no cost is incurred by
the near collision penalty. In this case, localization is still
possible, as the seeker may circle the target from afar and
concentrate belief relatively well.

5.3. Comparison of Controllers

5.3.1 Greedy

The greedy method iterates over all possible actions and
chooses that which maximizes the reward function for that
step. Since it takes the lowest cost action at every step, it
never plans ahead to incur some penalty to get close to the
target and then receive a much higher reward. The greedy
solver only maintains a filter with a tracking error of greater
than 30m, which may or may not be suitable given the task.
This error might be acceptable when tracking a highly er-
ratic animal, but less so when tracking a car with constant
velocity on a highway.

5.3.2 DQN

The second controller is the standard DQN algorithm,
which makes Q-learning tractable with continuous observa-
tion spaces through the use of neural networks. The DQN
controller is trained until convergence, which happens after
about 1800 episodes across all random seeds used. It’s in-
teresting to note that the DQN controller is very susceptible
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Tracking Error Collision Rate Average Cost
Greedy 30.5m 1.8% -4.18
DQN 5.4m 62% -2.37
DDPG 20.1m 0% -3.73
TD3 13.5m 0% -3.75

Table 2: Performance of controllers against three different
metrics, averaged over 100 episodes.

to catastrophic forgetting, where some time after conver-
gence performance degrades significantly. Despite this, the
DQN controller performs fabulously, learning that the long-
term reward from incurring the collision penalty is greatly
outweighed by reduction in entropy. This also validates our
choice of state space, showing that learning the optimal pol-
icy with mean estimates from the particle filter is possible.
This controller reveals that the optimal policy is to disre-
gard the collision rate, as with λ = 1 the cost of collisions
is greatly outweighed by the reward from entropy reduction.
This can be seen in figure 1.

5.4. DDPG and TD3

The continuous controller presents an interesting yet
suboptimal policy. The controller learns to avoid all par-
ticles and observe from afar. The effective collision rate is
0, because as soon as belief is updated after the first step the
controller takes actions to move away from the concentrated
belief.

An interesting degenerate behavior of the particle filter
appears both in the greedy case and with the continuous
controllers. When the seeker is farther away from the target,
many actions must be taken to receive the same information
than when the seeker is close to the target. Again, this is due
to the information gained from parallax. An illustrative case
can be seen in figure 1, where the belief is concentrated in a
line from the seeker to the target. The controller’s optimal
action would be to move to the orthogonal axis of the belief
distribution, yet the controller fails to learn this behavior.

Despite similar behavior to the greedy method, contin-
uous control is not a total failure, as it still dominates the
greedy method in all performance metrics. Tracking error,
while still significantly larger than that of DQN, is further
reduced in TD3. This indicates that despite maintaining a
similar collision rate and average entropy to DDPG, TD3
manages to take actions that improve the particle filter’s ac-
curacy rather than precision.

6. Conclusion and Future Work
In conclusion, we show that continuous learning-based

methods improve on a greedy baseline in terms of localiza-
tion quality and collision rate, however, further work must
be done to show that continuous control dominates discrete

(a) Policy learned by DQN. (b) Policy learned by TD3.

Figure 1: The brighter chevrons indicate more recent posi-
tions of the seeker, the black dots are particles in the filter,
and the red x is the target.

control. Discrete control through DQN proved victorious in
these experiments. It’s likely that some performance gain
would have been possible with the continuous control algo-
rithms if we had more time – training DDPG and TD3 took
significantly longer than DQN. Because the limiting factor
was training time, leveraging techniques like asynchronous
updates [14] or learning from demonstrations [15] may have
allowed for more time to perform hyperparameter search or
may have improved model stability.

6.1. Particle Filter

Instead of taking the mean of the particle filter for esti-
mating the state, it is possible to use the whole particle filter
[4], [5]. Particle filters are often highly non-Gaussian, so a
simple mean and standard deviation does not accurately rep-
resent the distribution. Fine discretization can turn a particle
filter into a 2D grid, which can be passed to a convolutional
neural network for learning algorithms. This may result in
higher quality inference, particularly with more interesting
target motion models.

6.2. Model-based Reinforcement Learning

The particle filter can be interpreted as a form of fea-
ture engineering, where we construct the filter based on the
relative bearing measurement given to us by the antenna.
However, we lose the particle filter after every episode and
must construct it again from scratch because we begin in
a new environment possibly unlike the previous one. Is
there a way to leverage the particle filter across training to
improve sample efficiency through model-based reinforce-
ment learning?

6.3. Flight Tests

The PyFEBOL drone simulation package and experi-
ments run in this paper correspond to a set of experiments
that were run in SISL. It would be interesting to demonstrate
some of these learned policies on an actual drone!
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7. Contributions
I worked on this project alone.
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