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Abstract

We implement a version of CycleGAN that includes var-
ious regularization and stabilization techniques applied in
other types of GAN models, and use it to perform sketch-to-
photo image translation. Additionally, we experiment with
a more advanced loss function for generators that aims to
enforce weaker cycle consistency early in training to en-
sure that generators produce realistic images. We discuss
the trade offs that come from using automatically gener-
ated edge maps vs. hand-drawn sketches, and demonstrate
various techniques that alleviate a majority of the general-
ization issues. The completed model implies the ability of
CycleGAN to generalize an edge-to-image training regime
to a sketch-to-image testing regime. Finally, we compare
our results against a baseline CoGAN model, through both
quantitative and qualitative metrics.

1. Introduction
Image-to-image translation has seen several improve-

ments in recent years due to generative adversarial net-
works, or GANs. We are investigating unpaired image-
to-image translation with generative adversarial networks.
Work done by Isola et al. in [8] demonstrates how we can
use paired images in training to create an image-to-image
mapping from one domain to another. An extension to the
pix2pix model is found in CycleGAN [21], where the loss
function for the generative network contains a term that en-
forces cycle consistency across mappings, i.e., that a map-
ping from one domain to another can be reversed to gen-
erate the same image. The specific image-to-image task
demonstrated in our work is similar to this visualization by
Christopher Hesse, which demonstrates examples of sketch-
to-photo translations trained using the pix2pix model. We
implement a version of CycleGAN that contains various sta-
bilization techniques found in other GAN models, such as
experience replay, label smoothing, and noisy labels. We
use this version of CycleGAN to perform sketch-to-photo

translation. The relaxation that unpaired training provides
allows for easier creation of datasets and combinations of
domains – we swap a domain and retrain rather than find
image-to-image pairs for that specific translation task. We
implement a version of CycleGAN that contains regulariza-
tion in the real and fake label used by the discriminator, and
use a modified cycle consistency loss that enforces feature-
level cycle consistency in addition to pixel-level cycle con-
sistency. In addition to these improvements upon the orig-
inal CycleGAN, we experiment with using artificially gen-
erated edge maps for training. Artificially generated edge
maps are easier to produce for a set of images, though re-
quire various preprocessing techniques to allow the model
to generalize to hand-drawn sketches. Our project differs
from [22] in that we aren’t doing multi-modal image trans-
lation, only from one domain to another. The inputs to
our model are either sketch images or real photos, which
are processed by the learned generative networks and trans-
formed into real photos and sketches, respectively. In par-
ticular, we work with images of trees, as an homage to Stan-
ford University.

2. Related Work
Generative Adversarial Networks

The original GAN proposed by Goodfellow et al. [5]
constitutes a network that learns an approximation of a dis-
tribution of data pX . It does so by training two networks
- a generator network and a discriminator network. These
networks are trained adversarially, i.e. the discriminator’s
objective is to discern real images from generated images,
and the generator’s objective is to generate images that fool
the discriminator.

Generative networks are not limited to simple distri-
butions. Work done by Liu et al. [11] demonstrated the
ability of generative networks to learn a joint distribution
between variables, through the use of multiple generator
and discriminator networks. This can be used to generate
pairs x1 ∼ pX1

, x2 ∼ pX2
of images that belong to the

joint distribution just by using the marginal distributions.
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Supervised Translation
When labels are given, i.e. explicit pairings between the

two domains, supervised methods like those described by
Isola et al. [8] are possible through the use of conditional
GANs. The pix2pix model described in this work performs
single-modal translation with multiple generator networks,
one for each domain-to-domain pairing. The model has
been effectively applied to problems such as generating
photos from label maps, reconstructing objects from edge
maps, and colorizing images.

Unsupervised Translation
Neural Style Transfer [9] is an alternate way to per-

form image-to-image translation, which synthesizes an im-
age by combining the content of one image with the style
of another image. It does so by matching the Gram matrix
statistics of pretrained deep features. In the context of our
problem, the content image represents the image which we
would like to translate, and the style image represents the
domain that we would like to translate it to. However, this
method is only applicable to single sample transfers, not en-
tire collections. It is possible to take an ensemble average
over a style collection of Gram matrix statistics, but this has
been shown to be less effective than other methods such as
CycleGAN.

CycleGAN is an example of unsupervised image-to-
image translation, where no labels are given to pair images
from domainX and domain Y . Zhu et al. [21] go a step fur-
ther by enforcing cycle consistency between pairs created,
i.e. by ensuring that generated images can be run through
another generator to create the paired image. CycleGAN
effectively learns a mapping function G : X → Y for im-
ages in domains X and Y , along with its inverse function
F : Y → X . Cycle consistency then amounts to the condi-
tion F (G(x)) ≈ x and G(F (y)) ≈ y.

The release of CycleGAN spurred many variants that
also solve the unsupervised translation problem using cycle-
consistency.

Bansal et al. [1] implements Recycle-GAN, which
solves the problem of unsupervised translation of video data
by combining CycleGAN with a Recurrent Neural Network
(RNN) to implement spatiotemporal constraints on the data.
Essentially, a stronger consistency between domains is built
by insisting not only that individual frame data is cycle-
consistent, but also that the temporal features of the video
are as well.

Liu et al. [12] solves the problem with Coupled GAN,
which assumes a shared latent space z between domains
X and Y . This assumption automatically implies cycle-
consistency since the latent space implicitly defines a map-
ping from X → Y and vice-versa. Variational Autoen-
coders (VAEs) are implemented on the latent space to gen-

erate fake image data. Weight-sharing is used on the cor-
responding encoder and generator matrices of the two do-
mains. Coupled GAN has been shown to have increased
performance over CycleGAN.

3. Data
We make use of several datasets to perform translation.

Training is primarily done with an ImageNet synset [17] of
palm trees. In our problem formulation, we perform train-
ing on photos of trees and automatically generated edge
maps of trees, and test our model by transforming hand-
drawn sketches of trees to photos of trees.

Selecting a tree species to perform image translation
with was challenging. Preliminary tests with the edge de-
tection algorithm on the Linden tree synset showed that a
majority of the Linden tree images were not iconic images
of Linden trees, but rather closeup images of leaves, pic-
tures with trees in the background or as a small section of
the image, or not Linden trees altogether. For these reasons,
palm trees were chosen over more traditional tree synsets
like Linden trees and oak trees, as palm trees have a ten-
dency to be photographed against sky backgrounds. The
palm tree synset contained 1605 images, split into a train-
ing set of 1578 and a testing set of 27 images.

Edges are automatically generated from these images
through the use of bilateral filtering and the Canny edge
detection algorithm [2]. We found early in experimenta-
tion that performing image translation with various types
of background noise reduced image quality and made train-
ing more difficult with edges. Bilateral filtering was used
to smooth images before applying Canny edge detection,
reducing artifacts and spurious edges that added unwanted
noise to the resulting images. We found that despite the
Gaussian filter applied in the Canny algorithm, a bilateral
filter applied beforehand further reduced noise in the pro-
duced edge maps. The algorithm calculates intensity gra-
dients using filters convolved across the image, and then
thins the edges and drops spurious edges through compari-
son with lower and upper bound parameters that we select.
We select these parameters to be 235 and 250, respectively,
giving a comparatively tight representation of the edges in
an image. Because edges are generated from the original
photos, we also have 1605 edge maps, split into a training
set of 1578 and testing set of 27.

This approximation of sketches was used instead of
hand-drawn sketches for several reasons. Hand-drawn
sketches of trees from ImageNet were available from the
Sketchy database [18]. Training generative networks re-
quires a large amount of data, however, and there were
comparatively fewer hand-drawn sketches from the Sketchy
dataset than possible edge maps from tree synsets in Ima-
geNet. A large part of our contribution includes the prepro-
cessing of tree images on ImageNet to accurately represent



Figure 1. A palm tree and its corresponding edge map. Also pic-
tured is an example of a tree from the SketchyDataset, not gener-
ated through an edge algorithm but instead drawn by hand.

sketches, allowing generalization of our model to sketch-to-
photo synthesis from edges-to-photo synthesis. An example
of a palm tree source image and the applied edge filtering
algorithm is pictured in 1.

To test generalization to sketches, we also make use of
the hand-drawn sketches. Hand-drawn sketches are taken
from the Sketchy Dataset [18]. These sketches are repre-
sentations of images from ImageNet, shown to subjects and
then drawn by hand. The dataset is used to examine the gen-
eralization of our model to sketch-to-photo synthesis from a
edge-to-photo training regime. The test dataset has 200 im-
ages of trees from ImageNet with 5 unique sketches each.

All images fed into the model are normalized in the same
fashion: images are resized to 256 × 256 pixels, with the
images normalized between to [−1, 1] across all pixels. In
order to combat overfitting with this small dataset, data aug-
mentation is performed. Data augmentation is done on both
edge and photo domains through random horizontal flipping
over each epoch, and additionally perturbations in satura-
tion, hue, and brightness are applied to the photo domain.
There perturbations are only applied over a 10% range of
the original value.

4. Methods
We use CycleGAN [21] for unpaired image-to-image

translation. More precisely, we train networks to learn func-
tions G : X → Y and F : Y → X . This allows us to
take an image x1 ∈ X and generate its pair y1 ∈ Y , and
vice versa. We let the true distributions of the domains be
pX and pY . Just as in [5], we will use discriminators DX

andDY as adversarial networks to the generators, which we
train to distinguish between elements in X and pX and Y
and pY , respectively. CycleGAN uses two losses per gen-
erator function. The first loss is adversarial, where the loss
function for G and its discriminator DY is:

LGAN (G,DY , X, Y ) = Ey∼pY
[logDY (y)]

+Ex∼pX
[log (1−DY (G(x)))]

(1)

and the objective is min
G

max
DY

LGAN . We can apply this

without loss of generality to F and its discriminator DX .

In this formulation of the loss function, the generator net-
work minimizes the probability of being assigned a fake
label for its generated images. The discriminator network
maximizes the probability of assigning correct labels to real
and fake images.

Because it is possible for a network to map an input
image x to multiple images in Y , we use a cycle con-
sistency loss to guarantee that there is a unique mapping.
Specifically, we wish to enforce that for images x and y,
F (G(x)) ≈ x (forward cycle consistency) and G(F (y)) ≈
y (backward cycle consistency). The loss used is:

Lcyc = Ex∼pX
[‖F (G(x))− x‖1]

+Ey∼pY
[‖G(F (y))− y‖1]

(2)

This loss minimizes the L1 distance between a recon-
structed image and its source image. This encourages the
generators to learn inverse mappings.

Then the full loss function in the standard CycleGAN
implementation is:

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )

+LGAN (F,DX , Y,X)

+λLcyc(G,F )

(3)

where λ is a parameter that determines the importance of
cyclic consistency loss vs. adversarial loss. Higher values
of λ weight cycle consistency higher than image quality.
Minimizing this loss through

G∗, F ∗ = arg min
G,F

max
DX ,DY

L(G,F,DX , DY ) (4)

yields G∗ and F ∗, our optimal mapping functions.
A variety of tricks exist that aid in stabilizing GANs [3].

Shrivastava et al. propose the usage of replay buffers to
stabilize GAN training [19]. This follows from reinforce-
ment learning, where experience replay buffers were fa-
mously used by Mnih et al. to stabilize a deep neural net-
work formulation of Q-learning [14]. The replay buffer in
our CycleGAN implementation stores previously generated
images. The discriminator is then shown these previously
generated images during training, encouraging the discrim-
inator to “remember“ images the generator network previ-
ously produced and be able to discriminate against artifacts
it may have “forgotten.“ Sampling and replacing in the re-
play buffer is probabilistic – with probability psample, an
example in a batch can be swapped with a sample from the
replay buffer.

Two types of noise are added to the discriminator dur-
ing training as a regularizer. During training, it is possible
for the discriminator to dominate the generator. These tech-
niques reduce the efficacy of the discriminator in relation
to the generator, making it easier for the generator to com-
pete. Discriminator networks normally classify real images



as true labels α and fake labels β. In the original formula-
tion of the adversarial loss, β is set to 0 while α is set to 1.
We instead change these terms to be based on uniform dis-
tributions, where β ∼ U(0, 0.3) and α ∼ U(0.7, 1.2). This
formulation adds noise to the targets of the discriminator
networks, effectively weakening the discriminator networks
and discouraging them from dominating the generator net-
works.

Additionally, with random chance pflip, we flip the tar-
get α and β such that the discriminator networks are pre-
dicting opposite of what it was in the previous batch, i.e.
the discriminator classifies real images as fake images and
vice versa. This additional noise in the target values for each
discriminator further weakens the discriminator networks.

Experiments were also performed with a cyclic consis-
tency loss based on work by Wang and Lin in [20]. Their
work observed empirically that the strict cycle consistency
constraint in CycleGAN limited generator networks nega-
tively in early epochs. Particularly, CycleGAN’s original
loss function too heavily emphasizes similarity along the
pixel level and not along the feature level. Enforcing cy-
cle consistency along the feature level ensures that features
are translated along both domains. In addition to this, the
authors weight the cyclic loss by the discriminator output,
making the new loss function

Lcyc = Ex∼pX
[DX(x)(γ‖fDX

(F (G(x)))− fDX
(x)‖1

+(1− γ)‖F (G(x))− x‖1)]

+Ey∼pY
[DY (y)(γ‖fDY

(G(F (y)))− fDY
(y)‖1

+(1− γ)‖G(F (y))− y‖1)]

(5)

In this cyclic loss function, γ encodes the trade off between
pixel level cyclic consistency and feature level cyclic con-
sistency, and fD(·) is a feature extractor take from the penul-
timate layer of D(·). This loss function aims to maintain
features across image translations, and also downplay the
weight of cycle consistency early in training where the gen-
erator does not produce realistic images to either domain.

All loss functions in our version of CycleGAN are im-
plemented in a least-squares fashion, similar to [13]. This
stabilizes training by allowing both generators and discrim-
inators to minimize a loss function that provides higher gra-
dients when farther from the objective. The loss function
for the adversarial loss in our formulation is then

LGAN (G,DY , X, Y ) = Ey∼pY
[(DY (y)− α)2]

+Ex∼pX
[(DY (G(x))− β)2]

(6)

which can be applied without loss of generality to the other
adversarial loss. The objective is now max

G
min
DY

LGAN . In

this formulation, the generator maximizes the difference be-
tween the discriminator’s output on its images and the tar-
get value of β, the label for fake images. The discriminator

minimizes the distance between its output on real images
w.r.t. α and fake images w.r.t. β. In practice, we modify the
generator’s loss function to minimize the distance between
the opposite label, allowing both the generator and discrim-
inator to perform gradient descent in a stable manner.

The generator architecture used is very similar to the
ResNet generator that is used in CycleGAN, itself taking
from Johnson et al. in [9]. The generator consists of several
reflection pad-convolutional-instance normalization-ReLU
blocks that are analogous to an encoder for the image in-
formation. This is followed by nine ResNet blocks, for-
mulated exactly as those in [6] and [21]. These blocks act
as a transformer, modifying the input in latent space to be-
come an output in the target domain. The decoder differs
from CycleGAN in that we do not use transpose convolu-
tions, but rather nearest neighbor upsampling layers. This
is done to reduce the presence of checkerboard artifacts in
produced images, theorized to be introduced by the striding
nature of transpose convolutions [15]. Then the decoder is
a series of upsample-reflection pad-convolutional-instance
norm-ReLU layers. A tanh layer is applied as the final acti-
vation, outputting images normalized between [−1, 1].

The discriminator architecture is the 70 × 70 PatchGAN
architecture used in [8] and [21]. Rather than outputting a
singular value per image, this architecture produces a 30 ×
30 × 1 output (for input images of size 256 × 256 × 3)
that represent the discriminator’s output on 70× 70 patches
of the input image. This discriminator was chosen over the
traditional PixelGAN (similar architecture that produces a
singular output per image) because PatchGAN allows for
spatial encoding of the truth value for different parts of the
input image.

5. Experiments
We perform training using the Adam optimizer on both

the generators and discriminators, with a learning rate of
0.0002 for both and β1 = 0.5, β2 = 0.999 for both ar-
chitectures. Experiments were run with λcyc equal to 10, a
replay buffer of size 50, and pflip equal to 0.05. For exper-
iments with the feature level cycle consistency loss, we use
a γ value of 0.05 and linearly anneal it to 0.95, and linearly
anneal λcyc from 10 to 0 over all epochs. We train over 200
epochs with a batch size of 8. We choose a larger batch size
than that used in the original CycleGAN implementation to
fully utilize our GPU. Otherwise, all hyperparameters are
set to their default values from [21].

Training is done with unpaired images from the palm tree
synset from ImageNet and automatically generated edge
maps from those images. We evaluate training performance
both with a test set of palm tree photos and edge maps not
used in training, and several tree sketch and tree photo im-
ages taken from [18] that were not used in training. Empir-
ical results showed that utilizing these images during train-



ing slowed generator progress towards learning the data dis-
tributions, likely because of a large imbalance in the number
of examples of the two. Some experiments are also done on
the Linden tree synset from ImageNet, though were a sec-
ondary point in our investigation and we do not evaluate our
model on all the same quantitative metrics with the Linden
tree domain.

6. Results

6.1. Evaluation Metrics

The original CycleGAN authors compare their model
quantitatively with image segmentation metrics for the
CityScapes dataset [4]. FCN scores measure the inter-
pretability of generated images against real images. With
the CityScapes dataset, CycleGAN was able to produce
photos from instance segmentation labels and vice versa.
The produced images can then be compared with per-
pixel, per-class, and class Intersection-over-Union metrics
to those produced by a standard FCN semantic segmen-
tation network. We are unable to use this metric because
our dataset does not contain semantic segmentation labels.
This is further complicated by the fact that one of the most
commonly used semantic segmentation datasets, Microsoft
COCO, does not contain labels for trees [10]. It is diffi-
cult to find a pretrained classifier that can create semantic
segmentation labels for our generated images to compare
against real images.

In addition to FCN scores, the authors use Amazon Me-
chanicalTurk to collect data from human subjects in several
trials. This is the ideal measure of photorealism in images,
but requires more time than algorithms that output scores
and is more subjective in nature. It is often difficult to guard
against test subjects who understand what artifacts to look
for when examining GAN-produced images, particularly in
a computer science department within a university. We in-
stead perform a less thorough qualitative analysis of our im-
ages ourselves, noting the strengths and weaknesses of our
produced images.

An advantage of utilizing images that come from Ima-
geNet is that there is an abundance of classification models
available that were pretrained on ImageNet. This makes it
possible to use the Fréchet Inception Distance (FID) as an
evaluation metric. The FID compares activation distribu-
tions of generated samples vs. real samples on the Incep-
tionV3 network [7]. The FID score is defined as

FID = ‖µr − µg‖2 + Tr (Σr + Σg − 2(ΣrΣg)
1
2 ) (7)

where Xr ∼ N (µr,Σr) and Xg ∼ N (µg,Σg) are the acti-
vations of the pool3 layer in the InceptionV3 network. For
this metric, lower is better. FID score is useful for quanti-
fying the quality and diversity of generated images, since it

Figure 2. CoGAN generated images of trees after 100 iterations
and 99000 iterations.

decreases as the number of modes increases and decreases
as the presence of similar features increases.

We also examine the quality of the inverse mapping by
examining the cycle consistency loss over the whole valida-
tion set. A lower cycle consistency loss indicates that little
information is lost during translation between domains. To
calculate this, we take the mean L1 distance between im-
ages and their reconstructions over the whole test set. For
this metric, lower is better.

6.2. Baseline

We use CoGAN [11] as a baseline because it is a simpler
model that can also learn joint distributions. Our method
with CoGAN is to learn the joint distribution of images from
pX and pY , where pX and pY are the marginal distributions
of tree sketches and tree photos, respectively. CoGAN al-
lows us to learn GX and GY , generative models that allow
us to synthesize new images in the distributions X and Y .
Since these networks are coupled, i.e. they share parameters
in the decoding section of the generator and in the encoding
section of the discriminator, we can use both to learn a map-
ping between X and Y . For a given input x, we must find a
noise vector z∗ such that GX(z∗) ≈ x. The corresponding
image y is then just GY (z∗).

The baseline method fails to produce realistic images for
either domain in our formulation of image-to-image transla-
tion. Zhu et al. [21] note that CoGAN was relatively unsuc-
cessful at producing realistic mappings, often falling into
modal collapse or producing unrealistic images. Perform-
ing the translation technique described above was difficult
because we could not achieve convergence with CoGAN
on our dataset. We suspect that this is due to the lack of a
large dataset, and despite data augmentation techniques that
were described earlier, CoGAN failed to learn a meaningful
mapping between domains. CoGAN produced remarkably
regular outputs, seemingly invariant to the training images
we fed into the model. The CoGAN model fails to produce
images that can be recognized as realistic trees, with most
images qualitatively looking like random noise. Some im-
ages of produced outputs at different iterations can be seen
in 2.



Translation CoGAN CycleGAN CycleGAN w/ LR CycleGAN w/ BC CycleGAN w/ all
edges-to-photos N/A 344.02 363.03 449.05 503.70
photos-to-edges 526.59 306.62 260.57 313.71 255.29
sketch-to-photo 538.97 491.06 434.18 479.18 526.06

photo reconstruction N/A 177.50 221.17 324.89 324.73
edge reconstruction N/A 99.34 173.22 196.56 196.03

Table 1. FID scores for generated photos of palm trees compared to real photos of palm trees, and generated edge maps compared to real
edge maps. Reconstructed images are also compared to their original domains. LR = label regularization, BC = better cycle consistency
loss

Reconstruction CycleGAN CycleGAN w/ LR CycleGAN w/ BC CycleGAN w/ all
edges 33.23 36.18 37.21 39.97
photos 101.30 91.50 107.37 101.21

Table 2. Mean L1 distance between source images and reconstructed images.

6.3. Analysis

6.3.1 Quantitative Analysis

We compare the original CycleGAN implementation to the
CoGAN baseline, in addition to our modified CycleGAN
with the various regularization and stabilization techniques
described above. In table 1, LR refers to the label regu-
larization technique that involves noisy labels and flipped
labels, and BC refers to the addition of feature level cycle
discrimination loss introduced by [20]. We compare FID
for our CycleGAN variants on a variety of translation tasks,
including the generalization task of sketch-to-photo. In ad-
dition to FID score, we also examine the cycle consistency
loss for the generators, quantifying the quality of the in-
verse mapping the generators learn. Reconstruction losses
are seen in 2. All metrics are measured on the testing sets
described previously.

For edge-to-photo translation, we find that the original
CycleGAN implementation outperforms all other variants.
The addition of label regularization through smoothing and
flipping decreased performance significantly The feature-
level cycle consistency loss drastically decreases perfor-
mance. We suspect that since edge maps lack features im-
portant to generation of images, such as color, texture, and
fine details, a feature-level cycle consistency loss is actually
detrimental to performance.

For photo-to-edge translation, our implementation of
CycleGAN with label regularization and the feature-level
cycle consistency term dominates all other models. There
is a significant margin between the variants with label reg-
ularization and other models. This can be attributed to reg-
ularization’s tendency to diversify generated images – the
noise added by flipped and noisy labels can reduce overfit-
ting and allow for a more diverse distribution of images.

In the sketch-to-photo generalization task, we see that la-
bel regularization again benefits the CycleGAN model. The
added noise likely combats overfitting, allowing for more
generalization when presented with a sketch rather than an

edge map.
We compare the reconstructed images with two metrics:

FID score and the cycle consistency loss. The original Cy-
cleGAN implementation is better than other models in most
situations with both these metrics. Interestingly, the variant
with label regularization has a better cycle consistency loss
with photos. This indicates that the reconstructed images
with vanilla CycleGAN have a higher image diversity than
CycleGAN with label regularization, despite being slightly
lower quality in reconstruction.

6.3.2 Qualitative Analysis

Our models do not have particularly compelling results for
edge-to-photo translation. Qualitatively, even the generated
distribution of photos for the best performing CycleGAN
variant does not appear to be real. This is evidenced by the
clear irregularities present in most images – floating leaves,
lack of bark, unrealistic colors, and textures that are clearly
repetitive and artificial in nature. There are, however, exam-
ples of images that may pass as realistic to an untrained eye
3 on certain datasets. We speculate that the lack of texture
in many images and sparse features contributes to this poor
performance.

However, the photo-to-edge translation works well qual-
itatively. The generated sketches match the edge map dis-
tribution very well – it appears as if the generator network
learned the bilateral filtering and Canny edge detection al-
gorithm. Empirically, the generator producing the edge
maps learns the distribution much more quickly that the in-
verse generator. At times, the textures produced are unre-
alistic for the parameters of the Canny edge detection al-
gorithm that we select, though look as if a different set of
parameters could produce those textures. This good perfor-
mance is likely because the Canny edge detection algorithm
itself is a series of convolutions of kernels over an input
image, very similar to the convolutions that the generative
network applies to an image.



We also examine generalization of our models from
edge-to-photo translation to sketch-to-photo translation.
Real sketches fed to the generator produce wildly unreal-
istic results. At best, the produced image colors the tree
sketch with green and colors the sky a shade of sky blue or
sunset. A large fraction of images in our palm tree dataset
are photos taken at sunset, explaining the bias towards or-
ange and red skies. While sketches from [18] are based
on images that are found in ImageNet, they lack the tex-
ture and details that an automatic edge detection algorithm
provides. In an attempt to better match the conditions of
[18], we also perform some experiments with the Linden
tree synset, which encompasses many of the tree images in
the Sketchy database. The result is still unrealistic, suggest-
ing that the generator depends greatly on the texture and
detail of the edge maps to produce realistic images. It’s
likely that the generator learns to encode information about
the photo class within the edges of the generated edge map,
and a sketch that does not resemble an edge map will per-
form poorly in this task. Sketches that possessed more tex-
ture details in the leaves and bark were colored more ac-
curately compared to simpler sketches. A common failure
mode cited by the original creators of CycleGAN involves
the transfiguration of images from one domain to another
– CycleGAN often cannot drastically modify the features
of the source image to those of the target image. This was
often the case for our sketches and edge maps with more
sparse edges, where CycleGAN would struggle to fill empty
spaces in the source images to create a realistic output in the
target domain. Despite this, it is not unreasonable to suggest
that a skilled artist could create a very detailed sketch that
could be passed to our generator to create a photorealistic
image.

6.3.3 Observations during training

During training, our monitoring software suggests that the
generator often oscillates between a few modes and fails to
maintain a diverse set of outputs. For example, the same
source images from different epochs during training often
produce target images with different colored skies or col-
ored bark. This can be seen in figure 3. It is difficult to de-
termine the source of these oscillations – the addition of la-
bel regularization smooths these oscillations somewhat but
results in lower quality images.

We found it difficult to balance the feature level cycle
consistency loss with the addition of more regularization
through label smoothing and flipping. Since the feature
level consistency loss depends on accurate output from the
discriminator, it is more desirable to have a competitive dis-
criminator rather than a weakened discriminator. The addi-
tion of too much noise in the discriminator’s target values
weakened the discriminator to the point where the genera-

Figure 3. Several images produced by the generators. The top left
and right images demonstrate the oscillation of modes for the sky
color after just 1 epoch. The bottom left image shows the ability of
CycleGAN to produce photorealistic images with the Linden tree
dataset. The bottom right image shows qualitative performance
of the generator on actual sketches, and also an example of the
inverse mapping from photo to edge to photo.

tor was easily able to fool the discriminator with suboptimal
data.

Experiments with different types of architectures also
provided some interesting results. The transition from
transpose convolution to resize-convolution noticeably re-
duced the presence of artifacts that resulted from the stride
of the convolution. Preliminary runs were done with Pix-
elGAN over PatchGAN, though the loss of spatial infor-
mation in the discriminator output that resulted from this
caused a massive drop in image quality. The change to
PatchGAN greatly improved our image quality, and this
sufficiently powerful discriminator was able to balance the
very expressive ResNet generator network well.

7. Conclusion

In conclusion, we demonstrate generative networks’
ability to produce semi-photorealistic images of trees from
automatically generated edge maps. The generative mod-
els do not generalize very well to the sketches we provide,
but with a sufficiently detailed sketch it is possible to gen-
erate photorealistic images. The regularization techniques
we employ are mildly effective in improving model per-
formance on this task, though when combined are less ef-
fective, likely because the two techniques are themselves
contrarian in nature. Our best performing model for the



generalization task was CycleGAN with label regulariza-
tion through smoothing and flipping.

Future work in this domain should explore the translation
of approximations of images to photos. Work in this niche,
like work done by Park et al. in [16], can vastly improve
rapid prototyping in media and other creative fields. Use of
this technology for semantic segmentation also presents in-
teresting use cases in robotics and autonomy in applications
like self-driving cars and other autonomous vehicles.
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9. Code
The public repository for the project can be found here.

The code for the replay buffers is adapted from the offi-
cial CycleGAN implementation here. Many existing open
source implementations of CycleGAN were difficult to
read/did not implement the same loss functions we attempt
to minimize, so we created the training and testing code our-
selves. We also take from the official implementation the
code for learning rate scheduling, along with cues for what
our loss functions should look like in the least squares for-
mulation (i.e. instead of implementing a least squares dif-
ference ourselves, we learned that it was possible to use cri-
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terion in PyTorch). The code for FID score comes from this
repo, where it is directly used to calculate our FID scores.
The code for the CoGAN baseline is from this open source
repo, only slightly adapted to work with our datasets.
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