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Abstract

This paper attempts to use Reinforcement Learn-
ing to model the proper dosage of Warfarin for
patients. The paper first examines two baselines:
a fixed model of 35 mg/week dosages and a linear
model that relies on patient data. We implemented
a LinUCB bandit that improved performance mea-
sured on regret and percent incorrect. On top of
the LinUCB bandit we experimented with online
supervised learning and reward reshaping to boost
performance. Our results clearly beat the base-
lines and show promise of using multi-armed ban-
dits and artificial intelligence to aid physicians in
deciding proper dosages.

1. Introduction

Warfarin is the most widely used oral blood anticoagulant
agent worldwide; with more than 30 million prescriptions
for this drug in the United States in 2004. The appropriate
dose of Warfarin is difficult to establish because it can
vary substantially among patients, and the consequences of
taking an incorrect dose can be severe. If a patient receives
a dosage that is too high, they may experience excessive
anti-coagulation (which can lead to dangerous bleeding),
and if a patient receives a dosage which is too low,
they may experience inadequate anti-coagulation (which
can mean that it is not helping to prevent blood clots).
Because incorrect doses contribute to a high rate of adverse
effects, pursuing improved strategies for determining an
appropriate dose is highly desired. (International Warfarin
Pharmacogenetics Consortium, 2009).

In practice a patient is typically prescribed an initial dose,
the doctor then monitors how the patient responds to the
dosage, and then adjusts the patient’s dosage as treatment
progresses. This interaction can proceed for several rounds
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before the best dosage is identified. However, it is best if
the correct dosage can be initially prescribed to prevent the
adverse affects described earlier. This project is motivated
by the challenge of Warfarin dosing, and considers a
simplification of this important problem, using real data.
The goal of this project is to explore the performance of
multi-armed bandit algorithms and artificial intelligence to
best predict the correct dosage of Warfarin for a patient
without a trial-an-error procedure as typically employed.

We use a publicly available patient dataset that was collected
by staff at the Pharmacogenetics and Pharmacogenomics
Knowledge Base (PharmGKB) for 5700 patients who were
treated with Warfarin from 21 research groups spanning 9
countries and 4 continents. Features of each patient in this
dataset includes, demographics (gender, race, ...), back-
ground (height, weight, medical history, ...), phenotypes
and genotypes. There are in total 5,528 patient with the
known therapeutic dose of Warfarin in the dataset. Given
this data one can classify the right dosage for each patient
as low: less than 21 mg/week, medium: 21-49 mg/week and
high: more than 49 mg/week.

2. Background and Related Work
2.1. Problem Background

Warfarin is a prescription medication used to prevent harm-
ful blood clots from forming or growing larger. Giving
patients the proper dose is very challenging as dose varies
from patient to patient due to genetic variability. The incor-
rect dosage can contribute to many adverse affects and may
hold serious consequences to the health of the patient. The
importance of getting a correct dosage is imperative and this
led to our desire to construct a model that could properly
and effectively prescribe the correct dose of Warfarin for a
patient. The current method is to give a patient a small dose
and slowly increment until the desired results occur but this
is slow and a potentially dangerous method.

2.2. Related Work

Given the importance of the problem, there has been pre-
vious work addressing how to best model Warfarin dosing.
Two standout papers that have addressed the problem are the
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The International Warfarin Pharmacogenetics Consortium’s
publication of “Estimation of the Warfarin Dose with Clin-
ical and Pharmacogenetic Data” and Bastani and Bayati’s
work “Online Decision-Making with High-Dimensional Co-
variates”.

2.3. Estimation of the Warfarin Dose with Clinical and
Pharmacogenetic Data

The International Warfarin Pharmacogenetics Consortium
published their work “Estimation of the Warfarin Dose with
Clinical and Pharmacogenetic Data” in 2009. This paper
curated the PharmGKB dataset mentioned previously and fo-
cused on clinical factors, demographic variables, and varia-
tions in two genes — cytochrome P450, family 2, subfamily
C, polypeptide 9 (CYP2C9), and vitamin K epoxide reduc-
tase complex, subunit 1 (VKORC1) (International Warfarin
Pharmacogenetics Consortium, 2009).

The consortium found that the best performing model, per-
formance gauged on the criterion of lowest mean absolute
error, was an ordinary least-squares linear regression that
predicts the square root of the dose and incorporates both
genetic and clinical data. This pharmacogenetic model out-
performed the clinical model as well as the fixed dosed
model substantially. A key takeaway was that patients who
most benefitted from the pharmacogenetic model are on the
extremes of the Warfarin spectrum such that an underdose
or overdose will cause significant harm. This is something
we explore further with reward reshaping.

2.4. Online Decision-Making with High-Dimensional
Covariates

This paper focuses on the idea of personalizing decisions
based on individual-level conditions or requirements. The
paper attempts to address the problem of learning a model of
decision rewards conditional on individual-specific covari-
ates and presents the application of personalized medicine
and in particular mentions the Warfarin problem. The paper
makes also calls to The International Warfarin Pharmacoge-
netics Consortium’s work on the Warfarin problem and uses
the same PharmGKB dataset. This paper uses a LASSO
Bandit and this bandit outperforms fixed dosing by physi-
cians. Despite the assumption that every patient dose can be
examined as a bandit problem, the LASSO Bandit showed
that reinforcement learning can be effective in improving
performance on tasks such as the Warfarin problem where
personalized decisions on the individual-level are beneficial.

3. Approach
3.1. Data Preprocessing

The data set we used was the PharmGKB data set curated by
the International Warfarin Pharmacogenetics Consortium.
The dataset consists of information about each patient, in-
cluding gender, race, ethnicity, age, height, and so on, as
well as the correct Warfarin dosage. We dropped 173 pa-
tients without information on the correct Warfarin dosage.
The dataset still had other key information missing for some
patients such as the Values for age, height and weight. to
fill these values in, we took the mode of the age to get an
approximate age in decades and the mean of heights and
weights in the data set. Other fields that potentially had
missing values, we decided to treat a missing value as a pos-
sible value the feature could take on. This left our dataset
with 5,528 valid entries.

3.2. Overview of Approaches

To address the Warfarin dosage prediction problem, we used
a variety of methods to gauge how to model Warfarin dosing.
As the first baseline, we used a fixed dose model. The
second baseline was a linear model. Our third model was a
LinUCB Bandit. The fourth model was online Supervised
Learning. The last model was reshaping the reward structure
for both the Bandit and Supervised Learning.

3.3. Baseline 1: Fixed Dose

This model was a fixed dosed model that would give all
patients a dose of 35mg/week. This approach was important
to gauge how assigning all patients a conservative medium
dose would perform. Due to the dataset having the cor-
rect dosage of Warfarin for all patients (Therepeutic
Dose of Warfarin column), it was simple to gauge if
a medium dose was the adequate amount.

3.4. Baseline 2: Linear Model

For this second baseline, the model we used was the War-
farin Clinical Dosing Algorithm. This model was a linear
model that had predetermined weights for the features re-
quired. The features required for this clinical dosing linear
model were Age in decades, Height in cm, Weight in kg, if
patient is Asian, if the patient is Black or African American,
if patient is of mixed or missing race, if patient is taking
one of Carbamazepine, Phenytoin, Rifampin, or Rifampicin
and lastly if the patient is taking Amiodarone. This linear
combination of features would then give us the square root
of the weekly dose.
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the algorithm simply chooses the arm that gives the highest

Warfarin clinical dosing algorithm expected payoff. A more detailed explanation can be found
4.0376 in Algorithm 1. Our choice of o was empirically chosen to
- 0.2546 x Age in decades be 1.0.
+ 0.0118 x Height in cm _ _
+ 0.0134 x Weight in kg Algorithm 1 LinUCB for Contextual Bandits
- 0.6752 x Asian race 1: for each arm a do
+ 0.4060 x Black or African American 2: A, 1,
+ 0.0443 x Missing or Mixed race 3 b, < 0
+ 1.2799 x Enz?rme inducer status 4: end for
- 0.5695 x Amiodarone sta'tus 5. fort — 1...N do
= Square root of weekly warfarin dose**
6: observe context x;
) . o ) ) o ) 7 for each arm a do
Figure 1. Warfarin Clinical Dosing Algorithm. This is a linear 3 0. — A ~'p
combination of the features mentioned in Section 3.3 for the Linear a .o e
baseline. 9: Dt.q — Tt 0a + a/ 2 TA, Ty
10: end for
11: choose action a; <— argmaxp; q
3.5. Feature Engineering a
12: observe reward 7

Before going to the more robust models, we wanted to
perform some feature engineering and find what features
would give us better performance and were more important
to the Warfarin Problem. After many iterations, we settled
upon 26 features to represent each patient. These features
are:

e Age in decades

e Height in cm

e Weight in kg

e Race (Indicators of is_Asian, is_Black, is_Missing)

e Enzyme Inducer Status (whether the patient is taking
Carbamazepine, Phenytoin, Rifampin or Rifampicin)

e Whether the patient is taking Amiodarone
e Gender
e VKORCI genotype

e VKORCI1 QC genotype

For categorical features, we use the standard one-hot vector
encoding.

3.6. LinUCB Bandit

LinUCB (Li et al., 2010) is an upper confidence bound
algorithm that assumes that the reward is a linear function of
the d features of a context. That is, for reward r; 4, context
x¢, arm a, and weight vector 0, we assume Elryolze] =
#,T0,. For every patient, the algorithm will perform least-
squares linear regression with all previously seen data and
construct a model to predict reward for each arm. Then,

13: Aat — Aat + 2T
14: bat — bat + ey
15: end for

The LinUCB algorithm, like other upper confidence bound
algorithms, admits sublinear regret (’5(\/ KdT) for K arms,
d features, and T steps. The ~ notation indicates that we
ignore logarithmic terms.

3.7. Online Supervised Learning

We additionally examine supervised learning in an online
(i.e. bandit-like) setting. For every patient, we fit a model
that predicts correct dosage from contexts. This model
is necessarily stronger than that used in LinUCB, as Lin-
UCB performs regression on rewards as opposed to correct
dosages. Regression directly on the correct dosages provides
finer-grained information compared to the reward observed,
allowing our supervised learning approach to dominate Lin-
UCB. An outline of the algorithm is shown in Algorithm
2.

Algorithm 2 Online Supervised Learning for Contextual
Bandits

1: fort =1...N do

2 observe context x;

3: A <+ matrix of all previously seen contexts

4 b < vector of correct dosage of all previously seen

contexts

5 0+ A~'b

6: choose action dictated by x;76

7

8

observe reward r;
: end for

While the algorithm shown in Algorithm 2 specifically
shows linear regression for modeling correct dosages,
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stronger function approximators may be used. Neural net-
works in particular show great promise for modeling com-
plex, nonlinear functions. The difficulty in using neural
networks in the online supervised learning paradigm is with
optimization — rather than simply computing a pseudoin-
verse in regression, the parameters of the neural network
must be trained through gradient descent or some other
optimization method. These methods are often more com-
putationally intensive and sometimes intractable. Different
heuristics may be applied to alleviate this problem, such as
only retraining every k steps. However, the online super-
vised learning problem continues to be difficult and further
work must be done for this to be a tractable solution.

3.8. Reward Reshaping

Following the work of The International Warfarin Pharma-
cogenetics Consortium, we were inspired to pursue reward
reshaping due to how giving a patient an underdose or over-
dose can produce significant harm. Since the goal of War-
farin is to prevent clots and serve as a blood thinner, we
believed that giving a patient who needed a high does a low
dose was worse than giving a patient who needed a low dose
a high dose as the patient would still be at risk to a clot if
they needed a high does and got a low one. Further research
into the effects of Warfarin inspired us to reshape our reward
structure. If we gave the patient the correct dose, then the
reward of O was appropriate. Giving a patient who needed a
low dose a high dose was going to be —R where R = 1.5.
Giving a high dose patient a low dose would be —2 x R.
Every other scenario was decided to be _TR.

The final reward reshaping table can be seen in Figure 2.

Given
‘ Low Medium High
B Low 0 —% 2R
= . R R
El Medium | —5 0 -5
g High | -R % 0

Figure 2. Reward Reshaping Table. This table depicts the reward
reshaping described in Section 3.8 where R = 1.5.

4. Experiment results
4.1. Evaluation Metrics

We use two evaluation metrics: Regret and Fraction of
incorrect dosing decisions.

To calculate Regret, we model the reward for each arm a;
for a patient with feature X; as:

Te(Xe,ai) = X[ Bi + € (1

and find 3; for each arm by calculating the least square

solution to the system of 5,528 linear equations (one for
each patient) where X is the 26 features we have previously
described. This works for our Linear Model baseline as well
since the 26 features include all features used in the Linear
Model baseline.

For our reward reshaping experiments, we refit 3; for each
arm since (X, a;) has been changed as previously de-
scribed in Figure 2.

Under this model, if the agent chooses arm ¢ for patient ¢, it
will incur the expected regret of:

E[m;wx[X? B;] — X{ Bi] )

The calculation of Fraction of incorrect dosing decisions,
which is the fraction of incorrect dosing decisions made
so far by the algorithm at the current timestep out of all
patients seen so far by the algorithm at the current timestep,
is straightforward. We additionally report the Fraction of
right decisions for the two baseline methods as requested.

4.2. Baseline

4.2.1. BASELINE 1: FIXED DOSE

Figure 3 shows the fraction of right decisions that the fixed-
dose baseline makes. We notice that the fraction of right
decisions fluctuates initially when there are few patients
seen, and eventually settles at 0.6118.

- = o

Fraction of Right Decisions
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Figure 3. Fraction of right decisions for fixed-dose baseline

4.2.2. BASELINE 2: LINEAR MODEL

Figure 4 shows the fraction of right decisions that the Lin-
ear Model baseline makes. We notice that similar to the
fixed-dose baseline, the fraction of right decisions fluctuates
initially when there are few patients seen, but the fluctuation
is less. The final fraction of right decisions after all patients
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are seen is 0.6431, which is higher than that of the fixed-
dose baseline. From Figure 6, we cans see more clearly
that linear model baseline, as expected, clearly outperforms
fixed-dose baseline by having a lower fraction of incorrect
decisions. Figure 5 also shows how linear model baseline
has much lower regret compared to fixed-dose baseline as
expected.

10
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Fraction of Right Decisions
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Figure 4. Fraction of right decisions for Linear Model baseline

4.3. LinUCB

After running the LinUCB model 20 times on different
shuffling of the dataset and finding the 95% confidence
interval (using the T-Distribution) for both the cumulative
regret and incorrect fraction, we plotted the results for the
LinUCB against the results from baseline 1, the fixed dosed
model, and baseline 2, the linear model.

Cumulative Regret for Bandit, Baselinel and Baseline2
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150 4 — Baseline 2

175

125

100

Cumulative Regret

o 1000 2000 3000 4000 5000
Patients Seen

Figure 5. Cumulative Regret for LinUCB bandit and baselines

In Figure 5, we see that the cumulative regret for baseline
2, the linear model, is lower than that of baseline 1, fixed

dose. The key takeaway however is that we clearly see that
the regret for the bandit is sublinear, which indicates that
as we continue to see more patients, the LinUCB bandit
will maintain a lower regret than the baselines. Based on
cumulative regret, using the LinUCB model is promising.
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Figure 6. Incorrect Fraction for LinUCB bandit and baselines

Figure 6 shows the performance of the LinUCB bandit ver-
sus the two other baselines measuring incorrect fraction. It
is difficult to see in Figure 6 that the LinUCB model beats
the baselines by achieving a lower incorrect fraction but in
Figure 7, the zoomed-in version, it is clear that LinUCB is a
better fit model for the Warfarin Problem.
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Figure 7. Incorrect Fraction for LinUCB bandit and baselines
zoomed in

4.4. Performance of Online Supervised Learning

Keeping the same metrics of performance, cumulative regret
and incorrect fraction, we had our online supervised learning
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model goes up against the two baselines and the LinUCB
Bandit.
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Figure 8. Cumulative Regret for Linear Regression and baselines
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Figure 9. Incorrect Fraction for Linear Regression and baselines

From Figure 8 and Figure 9, we see that the Linear Regres-
sion clearly surpassed the baselines using the two metrics
of performance. Unlike the LinUCB bandit, we see that the
Linear Regression model clearly beats the baselines using
the metric of Incorrect Fraction. To see if the Linear Regres-
sion model is a good fit for the Warfarin problem, we must
compare the results to the LinUCB model.

In Figure 10, we see that for the number of patients that we
saw, Linear Regression had a lower cumulative regret than
that of the LinUCB Bandit. After 5,528 patients, the Linear
Regression is lower than the bandit and does not overlap in
confidence interval but the behavior of their regrets call into
question whether the Linear Regression will be able sustain
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Figure 10. Cumulative Regret for Linear Regression and LinUCB
bandit

the sub-linear regret the LinUCB model demonstrates.
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Figure 11. Incorrect Fraction for Linear Regression and LinUCB
bandit

However, from figure 11, we can see that the linear regres-
sion model clearly outperforms the LinUCB bandit model
on incorrect fraction, as seen by how the blue line, represent-
ing the incorrect prediction fraction for linear regression,
clearly lies below the red line, representing incorrect pre-
diction fraction for LinUCB, with no overlap in confidence
interval after the 1000 patients. This is a clear sign of suc-
cess for the supervised learning model and is indicative
that the model can be well equipped to handle the Warfarin
dosage prediction problem.



Estimation of Warfarin Dosage with Reinforcement Learning

4.5. Reward Reshaping

Reward Reshaping was an idea that we felt would be very
successful in addressing this problem due to the impor-
tance of getting the proper dosage and avoiding potential
adverse affects of getting an incorrect dose. Reward reshap-
ing directly impacts how regret is computed so to make the
comparisons fair, we applied reward reshaping to all of our
models for comparison.
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Figure 12. Incorrect Fraction for Linear Regression and LinUCB
bandit

In Figure 12, we see that the reward reshaping alters the
cumulative regret of all the models when compared to Fig-
ure 5. The key takeaway here is that not only did reward
reshaping decrease the cumulative regret for the LinUCB
bandit compared to that in Figure 5 but it also very signifi-
cantly decreased the cumulative regret of the Linear baseline.
This result begins to indicate that reward reshaping can be
effective for certain problems.

Figure 13 depicts how the reward reshaping still allows
for the LinUCB model to have a lower incorrect fraction
than the two baselines. This solidifies that LinUCB is a
better model than the two baselines as its performance was
consistent despite changes to the reward structure.

When comparing the performance of the LinUCB bandit
with the standard reward structure to that of LinUCB with
reward reshaping (Figure 14), we can see that the model
with reward reshaping generally performed better than the
one with standard rewards as seen in its lower fraction of
incorrect decision. The performance gap, however, is very
small as both models are in each other’s confidence intervals.
However, the results are still indicative that there are poten-
tial benefits in altering the reward structure of the models.
More work could be done to find the best reward structure
for the problem.
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Figure 13. Incorrect Fraction for Linear Regression and LinUCB
bandit
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Figure 14. Incorrect Fraction for Linear Regression and LinUCB
bandit

Finally, to have a holistic assessment of the effectiveness
of reward reshaping, we compare the performance of all
the non-baseline models, LinUCB and supervised learning,
with and without reward reshaping and show the result in
Figure 15.

From Figure 15, we can see that the models with reshaped
reward benefited from a decreased incorrect fraction but
were overlapping in confidence intervals with their standard
reward counterparts. Figure 15 also shows the superior per-
formance of the supervised learning model to the LinUCB
bandit.

Our experiments thus indicate that for problems with vari-
able outcomes, reshaping rewards with the context of the
problem in mind can lead to small performance improve-
ments. Regarding the Warfarin dosage prediction problem,
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Figure 15. Incorrect Fraction for Linear Regression and LinUCB
bandit

small boosts in performance are significant and substantial
as it could mean the difference between a patient’s condition
improving or potential adverse affects arising.

5. Conclusion

Following various experiments, it is clear that LinUCB ban-
dit algorithm has a substantially better performance than
the fixed dose baseline and the linear combination baseline.
Linear regression on the actual dosage gives us a stronger
predictor than LinUCB with the buckets, so it’s an upper
bound on the performance of LinUCB. Reward shaping
helps with improving accuracy with all models, though only
marginally. The results from this paper make it clear that
artificial intelligence and reinforcement learning are effec-
tive in improving performance on tasks such as the Warfarin
dosage prediction problem and others where personalized
decisions on the individual-level are beneficial and impera-
tive to the problem.

5.1. Future Work

Future work for the Warfarin dosage prediction problem
could include further study with Reward Reshaping that
has a stronger physiological backing to how rewards should
be altered, as well as comparisons with more sophisticated
neural network architectures for online supervised learning.
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